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Rough Outline

e Bin-to-Bin Distances.

¢ Cross-Bin Distances:
— Quadratic-Form (aka Mahalanobis) / Quadratic-Chi.

— The Earth Mover’s Distance.
e Perceptual Color Differences.

¢ Hands-On Code Example.




Distance ?
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Metric

e Non-negativity:
D(P,Q) >0
e Identity of indiscernibles:
D(P,Q)=0iff P=Q
e Symmetry:
D(P,Q) = D(Q, P)

e Subadditivity (triangle inequality):
D(P,Q) < D(P,K) + D(K, Q)
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Metric

e Non-negativity:
D(P,Q) >0

e Identity of indiscernibles:

DP,Q)=0if P=Q

An object is most similar to itself




Metric

e Symmetry:
D(P,Q) = D(Q, P)

e Subadditivity (triangle inequality):
D(P,Q) < D(P,K) + D(K, Q)

Usetul for many algorithms




Minkowski-Form Distances

L,(P,Q) = (Z P; — Qz‘p) p




Minkowski-Form Distances

Ll(PvQ):Z‘PZ’_Qi|




Kullback-Leibler Divergence

KL(P,Q) =) P;log g

e Information theoretic origin.

e Non symmetric.

« Q=07




Jensen-Shannon Divergence

JS(P,Q) = 1KL(P M) + ;KL(Q M)

1

M=2(P+Q)




Jensen-Shannon Divergence

JS(P,Q) = 1KL(P M) + ;KL(Q M)

1

M=2(P+Q)

e Information Theoretic origin.

e Symmetric.
e /JS Isa metric.




Jensen-Shannon Divergence

e Using Taylor extension and some algebra:
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x* Histogram Distance

, | P, — Q;)?
(B Q)= 52 ((Pz' ‘|‘%z))
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e Statistical origin.
e Experimentally results are very similar to JS.

e Reduces the effect of large bins.

e/ x? is a metric



x* Histogram Distance




x* Histogram Distance




x* Histogram Distance
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e Experimentally better than L».



Bin-to-Bin Distances

e Bin-to-Bin distances such as L, Lo, x? are
sensitive to quantization:

Ll(,?) > Ll(?l)




Bin-to-Bin Distances

e #bins —> robustness W distinctiveness
e #bins § —>robustness  distinctiveness B

L1<7) > Ll(?l)




Bin-to-Bin Distances

e #bins = ——>robustness W distinctiveness
e #bins § —>robustness _ distinctiveness |




The Quadratic-Form Histogram Distance

QFA(P,Q) = \/(P -~ QTA(P - Q)

= Z(Pi — Qi) (P — Qj) A

e A,; is the similarity between bin i and j.

e If A is the inverse of the covariance matrix, QF is called
Mahalanobis distance.



The Quadratic-Form Histogram Distance

QFA(P,Q) = \/(P -~ QTA(P - Q)

= \/Z(Pi — Qi)(Pj — Q) A
A=1 :
\: Z(Pz —Qi)* = L2(P, Q)




The Quadratic-Form Histogram Distance

QFA(P,Q) = \/(P -~ QTA(P - Q)

e Does not reduce the effect of large bins.
e Alleviates the quantization problem.

e Linear time computation in # non zero A;;.




The Quadratic-Form Histogram Distance

QFA(P,Q) = \/(P -~ QTA(P - Q)

e If A is positive-semidefinite then QF is a
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The Quadratic-Form Histogram Distance

QFA(P,Q) = \/(P -~ QTA(P - Q)

e If Ais positive-definite then QF is a metric.




The Quadratic-Form Histogram Distance

QFA(P,Q) = \/(P -~ QTA(P - Q)

= /(P - QTWTW(P - Q)



The Quadratic-Form Histogram Distance

QF4(P,Q) = /(P ~ QTA(P - Q
= Lo(WP,WQ)

linear transformation

HUEPENUENT

not true




The Quadratic-Form Histogram Distance

QFA(P,Q) = \/(P -~ QTA(P - Q)

e Converting distance to similarity (Hafner et. a/ 95):




The Quadratic-Form Histogram Distance

QFA(P,Q) = \/(P -~ QTA(P - Q)

e Converting distance to similarity (Hafner et. a/ 95):

D(¢,5)
max; ; (D(%,7))

84

Aijze

If o is large enough,
A will be positive-definitive




The Quadratic-Form Histogram Distance

QFA(P,Q) = \/(P -~ QTA(P - Q)

e | earning the similarity matrix: part 2 of this tutorial.




The Quadratic-Chi Histogram Distance

| 3 (P — Qi) (P — Qj)Aiy
WP =\ |2 5 BT QA (5P T QAT

1]

e A;; is the similarity between bin i and j.
e Generalizes (QF and X

e Reduces the effect of large bins.

e Alleviates the quantization problem.

e Linear time computation in # non zero A;;.



The Quadratic-Chi Histogram Distance

(Pi — Qi)(Pj _E)Aij
D o(Pe+Qc)Aci)™ (D (Pe + Qc)Agy

IS non-negative if A is positive-semidefinite.

QCL(P,Q) =

e Symmetric.
e Triangle inequality unknown.

o If we define? =0 and 0 <m < 1, QC is continuous.
0]



Similarity-Matrix-Quantization-Invariant Property

D<| A DUl )




Sparseness-Invariant

Empty bins

D(II’I-) ] D(Il 1. )




The Quadratic-Chi Histogram Distance {J‘; Code

function dist= QuadraticChi(P,Q,A,m)

Z= (P+Q)*A;

% 1 can be any number as Z_i==0 iff D_i=0
Z(Z==0)= 1;

2= 7. m;

D= (P-Q)./Z;

% max is redundant if A is

% positive-semidefinite

dist= sqrt( max(D*A*D’,0) );




The Quadratic-Chi Histogram Distance {J‘; Code

T1ime Complexity: O(#Az] # O)

function dist= QuadraticChi(P,Q,A,m)

Z= (P+Q)*A;

%» 1 can be any number as Z_i==0 iff D_i=0
AVA S )EINE

2= 7. m;

D= (P-Q)./Z;

%» max is redundant if A is

% positive-semidefinite

dist= sqrt( max(D*A*D’,0) );




The Quadratic-Chi Histogram Distance {J‘; Code

What about sparse (e.g. BoW) histograms 7

function dist= QuadraticChi(P,Q,A,m)

Z= (P+Q)*A;

%» 1 can be any number as Z_i==0 iff D_i=0
AVA S )EINE

2= 7. m;

D= (P-Q)./Z;

%» max is redundant if A is

% positive-semidefinite

dist= sqrt( max(D*A*D’,0) );



The Quadratic-Chi Histogram Distance Code

What about sparse (e.g. BoW) histograms 7
P-Q-=

NS - S+ s e
Time Complexity: O(5K)




The Quadratic-Chi Histogram Distance Code

What about sparse (e.g. BoW) histograms 7
P-Q-=

NS - S+ s e
Time Complexity: O(5K)




The Quadratic-Chi Histogram Distance Code

What about sparse (e.g. BoW) histograms 7
P-Q-=

NSNS - SRR + > SR
Time Complexity: O(5K)

Average of non-zero entries
in each row of A



The Earth Mover’s Distance




The Earth Mover’s Distance

e The Earth Mover’s Distance is defined as the
minimal cost that must be paid to transform one
histogram into the other, where there is a
“ground distance” between the basic features
that are aggregated into the histogram.




The Earth Mover’s Distance




The Earth Mover’s Distance
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The Earth Mover’s Distance

EMDP(P.Q) = min | 3 P,D;

S.tl: ZFZJ—P ZFZ]_
ZFZ-]- =) P=) Q=1
2,] 2 J




The Earth Mover’s Distance

i FigDij

EMDP(P.Q) = mi
(P, Q) P

S.T: ZFZ] Pz ZFzg Qj
7 )

Fy; >0



The Earth Mover’s Distance

e Pele and Werman 08 — EM D, a new EMD
definition.




Definition:

s.t: ZFijﬁpi ZF?JJ'SQJ'




EMD

Demander Supplier
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EMD

Demander Supplier
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When to Use EM D

e When the total mass of two histograms is
important.

EMD(lgsull ) = EMD( Iyl )




When to Use EMD

e When the total mass of two histograms is
important.

S— |

lﬁI\D( Il,.l ) <lﬁ4\D( II,II )




When to Use EMD

e \WWhen the difference in total mass between
histograms is a distinctive cue.

EMD(H,M )=EMD(Hl .l )=0




When to Use EM D

e \WWhen the difference in total mass between
histograms is a distinctive cue.

EMD(H,NM )=EMD(N ,II )=0

EMD( I ||)<ﬁ4\D(II,I|)




When to Use EMD

e If ground distance is a metric:

e MD is a metric only for normalized histograms.

o EMD is a metric for all histograms (C' > 1A).



W\D - a Natural Extension to L4

o E'/]W\ZDILl if:

0 ifi=j

D;; = .
2 otherwise

—— D
EMDC (P, Q) — min FZJDZJ—F




The Earth Mover’s Distance Complexity Zoo

e General ground distance: O(N? log V)
— Orlin 88

e [; normalized 1D histograms O(NV)

— Werman, Peleg and Rosenfeld 85




The Earth Mover’s Distance Complexity Zoo

e L7 normalized 1D cyclic histograms O( V)

— Pele and Werman 08 (Werman, Peleg, Melter, and
Kong 86)

B__F e

0 60 120 180 240 300 360

N
1




The Earth Mover’s Distance Complexity Zoo

e L3 Manhattan grids O(N?log N (D + log V))
— Ling and Okada 07

O—0O—0O—0—0

L]

O—0O—0O—0—0
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O—0O0—0—0—0




The Earth Mover’s Distance Complexity Zoo

e What about N-dimensional histograms with a
cyclic dimensions?

> | | T
T < | ——




The Earth Mover’s Distance Complexity Zoo

e What about N-dimensional histograms with a
cyclic dimensions?

|
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The Earth Mover’s Distance Complexity Zoo

e What about N-dimensional histograms with a
cyclic dimensions?
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The Earth Mover’s Distance Complexity Zoo

e L, general histograms O( N2 log?” ! N)

— Gudmundsson, Klein, Knauer and Smid 07

P1 lq,
pa\\ P2
)

P4
Ps a

Ps




The Earth Mover’s Distance Complexity Zoo

e min(L1,2) 1D linear/cyclic {1,2,...,A} O(N)
histograms

— Pele and Werman 08




The Earth Mover’s Distance Complexity Zoo

e min(L1,2) 1D linear/cyclic {1,2,...,A} O(N)
histograms

— Pele and Werman 08

v |4 [
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The Earth Mover’s Distance Complexity Zoo

e min(L1,2) general {1,2,..., A} histograms
K is the number of edges with cost 1 O(N?K log(4-))

— Pele and Werman 08



The Earth Mover’s Distance Complexity Zoo

e Any thresholded distance O(N?log N (K + log N))

— Pele and Werman 09 /

number of edges with cost
different from the threshold

/

O(N?log® N) < K =O(logN)




Thresholded Distances

e EMD with a thresholded ground distance is

NOt an approximation of EMD.

e Tt has better performance.




The Flow Network Transformation

A

i

7'%
Original Simplified
Network Network




The Flow Network Transformation

A

i

7'%
Original Simplified
Network Network




The Flow Network Transformation

< _

A

Flowing the Monge sequence

(if ground distance is a metric,
zero-cost edges are a Monge sequence)




The Flow Network Transformation

Removing Empty Bins
and their edges



The Flow Network Transformation

‘

We actually finished here....



Combining Algorithms

e EMD algorithms can be combined.

e For example L;:

el ) Gl

O—0—0

O
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O—0O—0




Combining Algorithms

e EMD algorithms can be combined.
e For example, thresholded L :




The Earth Mover’s Distance Approximations




The Earth Mover’s Distance Approximations

e Charikar 02, Indyk and Thaper 03 — approximated
EMDon {1,..., A}¢ by embedding it into the
L1 norm.

Time complexity: O(T'Ndlog A)
Distortion (in expectation):




The Earth Mover’s Distance Approximations

¢ Grauman and Darrell 05 — Pyramid Match Kernel
(PMK) same as Indyk and Thaper, replacing [,
with histogram intersection.

e PMK approximates EMD with partial matching.
e PMK is a mercer kernel.

e Time complexity & distortion — same as Indyk and
Thaper (proved in Grauman and Darrell 07).




The Earth Mover’s Distance Approximations

e [ azebnik, Schmid and Ponce 06 — used PMK in
the spatial domain (SPM).




The Earth Mover’s Distance Approximations

level 0 level 1 level 2
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The Earth Mover’s Distance Approximations




The Earth Mover’s Distance Approximations

e Shirdhonkar and Jacobs 08 - approximated EMD
using the sum of absolute values of the weighted
wavelet coefficients of the difference histogram.

Wavelet

Transform

j=0

Absolute
values




The Earth Mover’s Distance Approximations

e Khot and Naor 06 — any embedding of the EMD
over the d-dimensional Hamming cube into L4
must incur a distortion of Q(d).

e Andoni, Indyk and Krauthgamer 08 - for sets with
cardinalities upper bounded by a parameter s
the distortion reduces to O(log slogd).

e Naor and Schechtman 07 - any embedding of the
EMD over {0,1,..., A}? must incur a distortion

of Q(y/logA).




Robust Distances

e Very high distances —) — same difference.




Robust Distances

e With colors, the natural choice.
D

ue
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Robust Distances




Robust Distances - Exponent

e Usually a negative exponent is used:

e Let d(a,b) be a distance measure between two
features - a, b.
e The negative exponent distance is:

_d(a’vb)

de(a,b) =1—e" »




Robust Distances - Exponent

e Exponent is used because (Ruzon and Tomasi 01):

robust, smooth, monotonic, and a metric

Input is always discrete anyway ...




Robust Distances - Thresholded

e Let d(a,b) be a distance measure between two

features - a,b.
e The thresholded distance with a threshold

of t > 0 is:

di¢(a,b) = min(d(a,b),t).




Thresholded Distances

e Thresholded metrics are also metrics (Pele and
Werman ICCV 2009).

e Better results.

e Pele and Werman ICCV 2009 algorithm computes
EMD with thresholded ground distances much
faster.

e Thresholded distance corresponds to sparse
similarities matrix -> faster QC / QF computation.

Dij
maxij (ng)

Aijzl




Thresholded Distances

e Thresholded vs.

— Fast computation of cross-bin distances with a
thresholded ground distance.

— changes small distances — can be a
problem (e.g. color differences).




Thresholded Distances

e Color distance should be thresholded (robust).

150 | — AEy,
== min(AEOO, 10)

—a kg
100 + 10(1 — 6—A4;Eoo)
o 10(1 — e 5 )

o)
o

distance from blue




Thresholded Distances

Exponent changes small distances
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A Ground Distance for SIFT

The ground distance between two SIFT bins

(xiay’hOi) and (%'ayjan)i

dr =||(x;,y;) — (xﬁyj)HQ_"
min(|o; — 0;], M — |o; — 0;])
dr =min(dg,T)




A Ground Distance for Color Image

The ground distances between two LAB image bins
(x4, Y4, Li,a;, b;) and (x;,v;,L;,a;,b;) we use are:

der = min((]|(xi, ¥i) — (25, 95)|]2)+
Aoo((Li,ai, b:), (Lj,a;4,b5)),T)



Perceptual Color Differences




Perceptual Color Differences

e Euclidean distance on L*a*b* space is widely
considered as perceptual uniform.

300 |
—|[Lab||2
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Perceptual Color Differences
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Perceptual Color Differences

e AEy on L*a*b* space is better.
Luo, Cui and Rigg 01. Sharma, Wu and Dalal 05.
2

distance from blue




Perceptual Color Differences

e AFy on L*a*b* space is better.
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Perceptual Color Differences

e AFy on L*a*b* space is better.

150
E— AEOO
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Perceptual Color Differences

e AFy on L*a*b* space is better.

e But still has major problems.

e Color distance should be thresholded (robust).




Perceptual Color Differences

e Color distance should be saturated (robust).

distance from blue
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Thresholded Distances

Exponent changes small distances
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Perceptual Color Descriptors




Perceptual Color Descriptors

e 11 basic color terms. Berlin and Kay 69.
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Perceptual Color Descriptors

e 11 basic color terms. Berlin and Kay 69.
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Perceptual Color Descriptors

e 11 basic color terms. Berlin and Kay 69.

’age cpyriﬁ ' ‘ ffo'
http://upload.wikimedia.org/wikipedia/commons/5/5¢c/Double-alaskan-rainbow.jpg




Perceptual Color Descriptors

e 11 basic color terms. Berlin and Kay 69.




Perceptual Color Descriptors

e How to give each pixel an “11-colors”
description ?




Perceptual Color Descriptors

e |earning Color Names from Real-World Images,
J. van de Weijer, C. Schmid, J. Verbeek CVPR 2007.




Perceptual Color Descriptors

e |earning Color Names from Real-World Images,
J. van de Weijer, C. Schmid, J. Verbeek CVPR 2007.




Perceptual Color Descriptors

e |earning Color Names from Real-World Images,
J. van de Weijer, C. Schmid, J. Verbeek CVPR 2007.

real-world




Perceptual Color Descriptors

e |earning Color Names from Real-World Images,
J. van de Weijer, C. Schmid, J. Verbeek CVPR 2007.

e For each color returns a probability distribution
over the 11 basic colors.

O S e
@ @ O




Perceptual Color Descriptors

e Applying Color Names to Image Description,
J. van de Weijer, C. Schmid ICIP 2007.

e Outperformed state of the art color descriptors.




Perceptual Color Descriptors

e Using illumination invariants — black, gray and
white are the same.

e “Too much invariance” happens in other cases

(Local features and kernels for classification of texture and object categories:

An in-depth study - Zhang, Marszalek, Lazebnik and Schmid. I1JCV 2007,
Learning the discriminative power-invariance trade-off - Varma and Ray. ICCV

2007).

e To conclude: Don't solve imaginary problems.



Perceptual Color Descriptors

e This method is still not perfect.

e 11 color vector for IS:

 JORNL X _ 000
00000100000

e In real world images there are no such

over-saturated colors.




Open Questions

e EMD variant that reduces the effect of large bins.
e | earning the ground distance for EMD.

¢ | earning the similarity matrix and normalization
factor for QC.




Hands-On Code Example

http://www.cs.huji.ac.il/~ofirpele/FastEMD/code/

http://www.cs.huji.ac.il/~ofirpele/QC/code/



Tutorial:

http://www.cs.huji.ac.il/~ofirpele/DFML_ECCV2010_tutorial/

Or (zoogle “Ofir Pele”
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