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Rough Outline

• Bin-to-Bin Distances.

• Cross-Bin Distances:

– Quadratic-Form (aka Mahalanobis) / Quadratic-Chi.

– The Earth Mover’s Distance.

• Perceptual Color Differences.

• Hands-On Code Example.



Distance ?



Metric  

• Non-negativity:
D(P,Q) ≥ 0

• Identity of indiscernibles:
D(P,Q) = 0 iff P = Q

• Symmetry:
D(P,Q) = D(Q,P )

• Subadditivity (triangle inequality):
D(P,Q) ≤ D(P,K) +D(K,Q)



• Non-negativity:
D(P,Q) ≥ 0

• Property changed to:
D(P,Q) = 0 if P = Q

• Symmetry:
D(P,Q) = D(Q,P )

• Subadditivity (triangle inequality):
D(P,Q) ≤ D(P,K) +D(K,Q)

Pseudo-Metric (aka Semi-Metric)



Metric  

An object is most similar to itself

• Non-negativity:
D(P,Q) ≥ 0

• Identity of indiscernibles:
D(P,Q) = 0 iff P = Q



Metric  

• Symmetry:
D(P,Q) = D(Q,P )

• Subadditivity (triangle inequality):
D(P,Q) ≤ D(P,K) +D(K,Q)

Useful for many algorithms



Minkowski-Form Distances  

Lp(P,Q) =
i

|Pi −Qi|p
1
p



Minkowski-Form Distances  

L2(P,Q) =
i

(Pi −Qi)2

L1(P,Q) =
i

|Pi −Qi|

L∞(P,Q) = max
i
|Pi −Qi|



Kullback-Leibler Divergence

KL(P,Q) =
i

Pi log
Pi
Qi

• Information theoretic origin.

• Non symmetric.

• Qi = 0 ?



Jensen-Shannon Divergence
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Jensen-Shannon Divergence

• Information Theoretic origin.

• Symmetric.

• is a metric.               
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Jensen-Shannon Divergence

• Using Taylor extension and some algebra:

JS(P,Q) =
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 Histogram Distance χ2

• Statistical origin.

• Experimentally results are very similar to JS.

• Reduces the effect of large bins.  

• is a metric 

χ2(P,Q) =
1

2
i

(Pi −Qi)2
(Pi +Qi)

p
χ2



 Histogram Distance χ2

<χ2( , )χ2( , )



 Histogram Distance χ2

>L1( , ) L1( , )



 Histogram Distance χ2

• Experimentally better than      .L2

χ2(P,Q) =
1

2
i

(Pi −Qi)2
(Pi +Qi)



L1( , )

Bin-to-Bin Distances

• Bin-to-Bin distances such as L2 are 
sensitive to quantization:

L1, L2,χ
2

> L1( , )



robustness      distinctiveness

robustness      distinctiveness 

• #bins

• #bins

Bin-to-Bin Distances

>L1( , ) L1( , )



robustness      distinctiveness

robustness      distinctiveness 

• #bins

• #bins

Bin-to-Bin Distances

Can we achieve 
robustnessrobustness

and 

distinctivenessdistinctiveness ?



The Quadratic-Form Histogram Distance 

• is the similarity between bin i and j.

• If     is the inverse of the covariance matrix, QF is called 
Mahalanobis distance.

Aij

=

sX
ij

(Pi −Qi)(Pj −Qj)Aij

QFA(P,Q) =
q
(P −Q)TA(P −Q)

A



The Quadratic-Form Histogram Distance 

QFA(P,Q) =
q
(P −Q)TA(P −Q)

=

sX
ij

(Pi −Qi)(Pj −Qj)Aij
A = I

=

sX
ij

(Pi −Qi)2 = L2(P,Q)



The Quadratic-Form Histogram Distance 

• Does not reduce the effect of large bins.

• Alleviates the quantization problem.

• Linear time computation in # non zero     . Aij

QFA(P,Q) =
q
(P −Q)TA(P −Q)



The Quadratic-Form Histogram Distance 

• If A is positive-semidefinite then QF is a pseudo-metric.

QFA(P,Q) =
q
(P −Q)TA(P −Q)



• Non-negativity:
D(P,Q) ≥ 0

• Property changed to:
D(P,Q) = 0 if P = Q

• Symmetry:
D(P,Q) = D(Q,P )

• Subadditivity (triangle inequality):
D(P,Q) ≤ D(P,K) +D(K,Q)

Pseudo-Metric (aka Semi-Metric)



The Quadratic-Form Histogram Distance 

• If A is positive-definite then QF is a metric. 

QFA(P,Q) =
q
(P −Q)TA(P −Q)



The Quadratic-Form Histogram Distance 

QFA(P,Q) =
q
(P −Q)TA(P −Q)

=
q
(P −Q)TWTW (P −Q)

= L2(WP,WQ)



The Quadratic-Form Histogram Distance 

QFA(P,Q) =
q
(P −Q)TA(P −Q)

= L2(WP,WQ)

We assume there is a linear transformationlinear transformation

that makes bins independent independent 

There are cases where this is not truenot true

e.g. COLORCOLOR



The Quadratic-Form Histogram Distance 

QFA(P,Q) =
q
(P −Q)TA(P −Q)

• Converting distance to similarity (Hafner et. al  95):

Aij = 1− Dij
maxij(Dij)



The Quadratic-Form Histogram Distance 

QFA(P,Q) =
q
(P −Q)TA(P −Q)

• Converting distance to similarity (Hafner et. al  95):

Aij = e
−α D(i,j)

maxij(D(i,j))

If α is large enough,
A will be positive-definitive



The Quadratic-Form Histogram Distance 

QFA(P,Q) =
q
(P −Q)TA(P −Q)

• Learning the similarity matrix: part 2 of this tutorial.



• is the similarity between bin i and j.

• Generalizes         and      . 

• Reduces the effect of large bins.

• Alleviates the quantization problem.

• Linear time computation in # non zero     . 

The Quadratic-Chi Histogram Distance 

χ2

QCAm(P,Q) =

vuutX
ij

(Pi −Qi)(Pj −Qj)Aij
(
P
c(Pc +Qc)Aci)

m(
P
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m
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QF



QCAm(P,Q) =

vuutX
ij

(Pi −Qi)(Pj −Qj)Aij
(
P
c(Pc +Qc)Aci)

m(
P
c(Pc +Qc)Acj)

m

The Quadratic-Chi Histogram Distance 

• is non-negative if A is positive-semidefinite.

• Symmetric.

• Triangle inequality unknown.

• If we define          and                 , QC is continuous. 0 ≤ m < 10
0 = 0



Similarity-Matrix-Quantization-Invariant Property

( , )D )( , = D



=

Sparseness-Invariant

D( , )D )( ,

Empty bins



function dist= QuadraticChi(P,Q,A,m)

Z= (P+Q)*A;

% 1 can be any number as Z_i==0 iff D_i=0

Z(Z==0)= 1;

Z= Z.^m;

D= (P-Q)./Z;

% max is redundant if A is

% positive-semidefinite

dist= sqrt( max(D*A*D’,0) );

The Quadratic-Chi Histogram Distance          Code



function dist= QuadraticChi(P,Q,A,m)

Z= (P+Q)*A;

% 1 can be any number as Z_i==0 iff D_i=0

Z(Z==0)= 1;

Z= Z.^m;

D= (P-Q)./Z;

% max is redundant if A is

% positive-semidefinite

dist= sqrt( max(D*A*D’,0) );

The Quadratic-Chi Histogram Distance          Code

Time Complexity: O(#Aij 6= 0)



function dist= QuadraticChi(P,Q,A,m)

Z= (P+Q)*A;

% 1 can be any number as Z_i==0 iff D_i=0

Z(Z==0)= 1;

Z= Z.^m;

D= (P-Q)./Z;

% max is redundant if A is

% positive-semidefinite

dist= sqrt( max(D*A*D’,0) );

The Quadratic-Chi Histogram Distance          Code

What about sparse (e.g. BoW) histograms ?



The Quadratic-Chi Histogram Distance Code

0 0 0 0 0 00 00 4 50 -3

P − Q =
What about sparse (e.g. BoW) histograms ?

Time Complexity: O(SK)



The Quadratic-Chi Histogram Distance Code

0 0 0 0 0 00 00 4 50 -3

P − Q =

#(P 6= 0) + #(Q 6= 0)

What about sparse (e.g. BoW) histograms ?

Time Complexity: O(SK)



Average of non-zero entries

The Quadratic-Chi Histogram Distance Code

0 0 0 0 0 00 00 4 50 -3

P − Q =

in each row of A

What about sparse (e.g. BoW) histograms ?

Time Complexity: O(SK)



The Earth Mover’s Distance



The Earth Mover’s Distance

• The Earth Mover’s Distance is defined as the 
minimal cost that must be paid to transform one 
histogram into the other, where there is a 
“ground distance” between the basic features 
that are aggregated into the histogram.



The Earth Mover’s Distance

≠



The Earth Mover’s Distance

=



EMDD(P,Q) = min
F={Fij}

i,j

FijDij

s.t :
j

Fij = Pi
i

Fij = Qj

i,j

Fij =
i

Pi =
j

Qj = 1

Fij ≥ 0

The Earth Mover’s Distance



The Earth Mover’s Distance

EMDD(P,Q) = min
F={Fij}

i,j FijDij

i Fij

s.t :
j

Fij≤Pi
i

Fij≤Qj

i,j

Fij = min(
i

Pi,
j

Qj)

Fij ≥ 0



• Pele and Werman 08 – , a new EMD 
definition.

The Earth Mover’s Distance

\EMD



Definition:

\EMD
D

C (P,Q) = min
F={Fij}

X
i,j

FijDij+¯̄̄̄
¯̄X
i

Pi −
X
j

Qj

¯̄̄̄
¯̄×C

s.t :
X
j

Fij≤Pi
X
i

Fij≤QjX
i,j

Fij = min(
X
i

Pi,
X
j

Qj) Fij ≥ 0



Supplier

EMD

Demander

Dij = 0

Demander ≤ Supplier



Demander Supplier

Demander ≤ Supplier

Dij = C

\EMD



When to Use 

• When the total mass of two histograms is 
important. 

EMD
¡

,
¢
= EMD

¡
,

¢

\EMD



When to Use 

• When the total mass of two histograms is 
important. 
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When to Use 

• When the difference in total mass between 
histograms is a distinctive cue.

EMD
¡

,
¢
= EMD

¡
,

¢
= 0

\EMD



EMD
¡

,
¢
= EMD

¡
,

¢

When to Use 

• When the difference in total mass between 
histograms is a distinctive cue.
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When to Use 

• If ground distance is a metric:

• EMD is a metric only for normalized histograms.

• \EMD is a metric for all histograms (C ≥ 1
2∆).

\EMD



C = 1Dij =
0 if i = j

2 otherwise

\EMD
D

C (P,Q) = min
F={Fij}

X
i,j

FijDij+¯̄̄̄
¯̄X
i

Pi −
X
j

Qj

¯̄̄̄
¯̄× C

• \EMD = L1 if:

\EMD - a Natural Extension to L1



The Earth Mover’s Distance Complexity Zoo

• General ground distance:

– Orlin 88

• normalized 1D histograms

– Werman, Peleg and Rosenfeld 85

L1

O(N3 logN)

O(N)



The Earth Mover’s Distance Complexity Zoo

• normalized 1D cyclic histograms

– Pele and Werman 08 (Werman, Peleg, Melter, and 
Kong 86)

L1 O(N)



O(N2 logN(D + logN))

The Earth Mover’s Distance Complexity Zoo

• Manhattan grids

– Ling and Okada 07

L1



• What about N-dimensional histograms with a 
cyclic dimensions?

The Earth Mover’s Distance Complexity Zoo



• What about N-dimensional histograms with a 
cyclic dimensions?

The Earth Mover’s Distance Complexity Zoo



• What about N-dimensional histograms with a 
cyclic dimensions?

The Earth Mover’s Distance Complexity Zoo



The Earth Mover’s Distance Complexity Zoo

• general histograms

– Gudmundsson, Klein, Knauer and Smid 07

L1

p1
p2

p3
p4

p5
p6

p7

p8

l2 l1 l`2

O(N2 log2D−1N)



The Earth Mover’s Distance Complexity Zoo

• 1D linear/cyclic                   
histograms

– Pele and Werman 08

min(L1, 2) O(N){1, 2, . . . ,∆}



The Earth Mover’s Distance Complexity Zoo

• 1D linear/cyclic                   
histograms

– Pele and Werman 08

min(L1, 2) O(N){1, 2, . . . ,∆}



The Earth Mover’s Distance Complexity Zoo

• general                         histograms

is the number of edges with cost 1

– Pele and Werman 08

min(L1, 2) {1, 2, . . . ,∆}D
K O(N2K log(NK ))



The Earth Mover’s Distance Complexity Zoo

• Any thresholded distance 

– Pele and Werman 09

O(N2 logN(K + logN))

number of edges with cost 

different from the threshold

K = O(logN)O(N2 log2N)



• EMD with a thresholded ground distance is 

not an approximation of EMD.

• It has better performance.

Thresholded Distances



The Flow Network Transformation

Original
Network

Simplified
Network



The Flow Network Transformation

Original
Network

Simplified
Network



The Flow Network Transformation

Flowing the Monge sequence 
(if ground distance is a metric, 

zero-cost edges are a Monge sequence)



The Flow Network Transformation

Removing Empty Bins
and their edges



The Flow Network Transformation

We actually finished here….



Combining Algorithms

• EMD algorithms can be combined.

• For example     :L1



Combining Algorithms

• EMD algorithms can be combined.

• For example, thresholded :L1



The Earth Mover’s Distance Approximations



• Charikar 02, Indyk and Thaper 03 – approximated 
EMD on                     by embedding it into the         

norm.

Time complexity:                       

Distortion (in expectation):

The Earth Mover’s Distance Approximations

L1
{1, . . . ,∆}d

O(TNd log∆)

O(d log∆)



The Earth Mover’s Distance Approximations

• Grauman and Darrell 05 – Pyramid Match Kernel 
(PMK) same as Indyk and Thaper, replacing     
with histogram intersection.

• PMK approximates EMD with partial matching.

• PMK is a mercer kernel.

• Time complexity & distortion – same as Indyk and 
Thaper (proved in Grauman and Darrell 07). 

L1



The Earth Mover’s Distance Approximations

• Lazebnik, Schmid and Ponce 06 – used PMK in 
the spatial domain (SPM).



The Earth Mover’s Distance Approximations
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The Earth Mover’s Distance Approximations



The Earth Mover’s Distance Approximations

Di f fer en ce

P

Q

Wavelet

Transform j=0

j=1

Absolute
values

+

• Shirdhonkar and Jacobs 08 - approximated EMD  
using the sum of absolute values of the weighted 
wavelet coefficients of the difference histogram.

×2−2×0

×2−2×1



The Earth Mover’s Distance Approximations

• Khot and Naor 06 – any embedding of the EMD 
over the d-dimensional Hamming cube into    
must incur a distortion of         .

• Andoni, Indyk and Krauthgamer 08 - for sets with 
cardinalities upper bounded by a parameter     
the distortion reduces to                      .

• Naor and Schechtman 07 - any embedding of the 
EMD over                       must incur a distortion 
of                  . 

L1
Ω(d)

s
O(log s log d)

{0, 1, . . . ,∆}2
Ω(
√
log∆)



Robust Distances

• Very high distances     outliers same difference.



Robust Distances

• With colors, the natural choice.
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Robust Distances

(blue, red) = 56

∆E00(blue, yellow) = 102

∆E00



Robust Distances - Exponent

• Usually a negative exponent is used:

• Let d(a, b) be a distance measure between two
features - a, b.

• The negative exponent distance is:

de(a, b) = 1− e−d(a,b)σ



Robust Distances - Exponent

• Exponent is used because (Ruzon and Tomasi 01):

robust, smooth, monotonic, and a metric

Input is always discrete anyway …



Robust Distances - Thresholded

• Let d(a, b) be a distance measure between two
features - a, b.

• The thresholded distance with a threshold
of t > 0 is:

dt(a, b) = min(d(a, b), t).



Thresholded Distances

• Thresholded metrics are also metrics (Pele and 
Werman ICCV 2009).

• Better results.

• Pele and Werman ICCV 2009 algorithm computes 
EMD with thresholded ground distances much 
faster.

• Thresholded distance corresponds to sparse 
similarities matrix -> faster QC / QF computation.

Aij = 1− Dij
maxij(Dij)



• Thresholded vs. exponent:

– Fast computation of cross-bin distances with a 
thresholded ground distance.

– Exponent changes small distances – can be a 
problem (e.g. color differences).

Thresholded Distances



Thresholded Distances

• Color distance should be thresholded (robust). 
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Thresholded Distances
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A Ground Distance for SIFT 

dR =||(xi, yi)− (xj , yj)||2+
min(|oi − oj |,M − |oi − oj |)

dT =min(dR, T )

The ground distance between two SIFT bins
(xi, yi, oi) and (xj , yj , oj):



A Ground Distance for Color Image

The ground distances between two LAB image bins
(xi, yi, Li, ai, bi) and (xj , yj , Lj , aj , bj) we use are:

dcT = min((||(xi, yi) − (xj , yj)||2)+
∆00((Li, ai, bi), (Lj , aj , bj)), T )



Perceptual Color Differences



Perceptual Color Differences

• Euclidean distance on L*a*b* space is widely 
considered as perceptual uniform.
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Perceptual Color Differences
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Perceptual Color Differences

• on L*a*b* space is better.

Luo, Cui and Rigg 01. Sharma, Wu and Dalal 05. 
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• on L*a*b* space is better.∆E00

Perceptual Color Differences

||Lab||2

∆E00



Perceptual Color Differences
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Perceptual Color Differences

• on L*a*b* space is better.

• But still has major problems.

• Color distance should be thresholded (robust). 

(blue, red) = 56

∆E00(blue, yellow) = 102

∆E00

∆E00



Perceptual Color Differences

• Color distance should be saturated (robust). 
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Thresholded Distances
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Perceptual Color Descriptors



• 11 basic color terms. Berlin and Kay 69.

Perceptual Color Descriptors

white red green yellow blue brown

purple pink orange grey

black



• 11 basic color terms. Berlin and Kay 69.

Perceptual Color Descriptors



• 11 basic color terms. Berlin and Kay 69.

Perceptual Color Descriptors

• Image copyright by Eric Rolph. Taken from: 
http://upload.wikimedia.org/wikipedia/commons/5/5c/Double-alaskan-rainbow.jpg



• 11 basic color terms. Berlin and Kay 69.

Perceptual Color Descriptors



• How to give each pixel an “11-colors”
description ?

Perceptual Color Descriptors



• Learning Color Names from Real-World Images,  
J. van de Weijer, C. Schmid, J. Verbeek CVPR 2007. 

Perceptual Color Descriptors



• Learning Color Names from Real-World Images,  
J. van de Weijer, C. Schmid, J. Verbeek CVPR 2007. 

Perceptual Color Descriptors



• Learning Color Names from Real-World Images,  
J. van de Weijer, C. Schmid, J. Verbeek CVPR 2007. 

Perceptual Color Descriptors

chip-based real-world



• Learning Color Names from Real-World Images,  
J. van de Weijer, C. Schmid, J. Verbeek CVPR 2007. 

• For each color returns a probability distribution 
over the 11 basic colors.

Perceptual Color Descriptors

white red green yellow blue brown

purple pink orange grey

black



• Applying Color Names to Image Description,       
J. van de Weijer, C. Schmid ICIP 2007.

• Outperformed state of the art color descriptors. 

Perceptual Color Descriptors



• Using illumination invariants – black, gray and 
white are the same. 

• “Too much invariance” happens in other cases 
(Local features and kernels for classification of texture and object categories: 
An in-depth study - Zhang, Marszalek, Lazebnik and Schmid. IJCV 2007, 
Learning the discriminative power-invariance trade-off - Varma and Ray. ICCV 

2007).

• To conclude: Don’t solve imaginary problems.

Perceptual Color Descriptors



• This method is still not perfect.

• 11 color vector for purple(255,0,255) is:

• In real world images there are no such 

over-saturated colors.

Perceptual Color Descriptors

0 0 00 0 0 00010



• EMD variant that reduces the effect of large bins.

• Learning the ground distance for EMD.

• Learning the similarity matrix and normalization 
factor for QC.

Open Questions



Hands-On Code Example

http://www.cs.huji.ac.il/~ofirpele/FastEMD/code/

http://www.cs.huji.ac.il/~ofirpele/QC/code/



Tutorial:

Or                “Ofir Pele”

http://www.cs.huji.ac.il/~ofirpele/DFML_ECCV2010_tutorial/


