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Abstract—Desktops can be exploited to violate privacy.
There are two main types of attack scenarios: active
and passive. We consider the passive scenario where the
adversary does not interact actively with the device, but
is able to eavesdrop on the network traffic of the device
from the network side. In the near future, most Internet
traffic will be encrypted and thus passive attacks are
challenging. Previous research has shown that information
can be extracted from encrypted multimedia streams. This
includes video title classification of non HTTP adaptive
streams. This paper presents algorithms for encrypted
HTTP adaptive video streaming title classification. We show
that an external attacker can identify the video title from
video HTTP adaptive streams sites such as YouTube. To the
best of our knowledge, this is the first work that shows this.
We provide a large dataset of 15,000 YouTube video streams
of 2,100 popular video titles that was collected under real-
world network conditions. We present several machine
learning algorithms for the task and run a thorough set of
experiments, which shows that our classification accuracy
is higher than 95%. We also show that our algorithms are
able to classify video titles that are not in the training set
as unknown and some of the algorithms are also able to
eliminate false prediction of video titles and instead report
unknown. Finally, we evaluate our algorithm robustness to
delays and packet losses at test time and show that our
solution is robust to these changes.

Index Terms—HTTP Adaptive Video Streaming, HTTP2,
Encrypted Traffic, Classification, YouTube

I. INTRODUCTION

Every day, hundreds of millions of Internet users view
videos online, and these numbers are clearly going to
increase [1], [2]. By 2020, the share of video traffic
is expected to increase to 82% of the total IP traffic,
up from 70% in 2015. Google’s streaming service,
YouTube, now occupies a market share of over 17% of
the total mobile network bandwidth in North America
[2], [3].

Currently, most of the video streaming web sites
including YouTube are using HTTP Adaptive Stream-

ing (HAS). Dynamic Adaptive Streaming over HTTP
(DASH) [4] is the de facto standard method for HAS.
DASH is a Multi Bit Rate (MBR) streaming method that
was designed to improve viewer Quality of Experience
(QoE) [5]. In DASH, each video is divided into short
segments, typically a few seconds long (2−16 seconds),
and each segment is encoded several times, each time
with a different quality representation. The user (player)
Adaptation Logic (AL) algorithm is responsible for the
automatic selection of the most suitable quality repre-
sentation for each segment, based on parameters such as
client playout buffer and network conditions. As a result,
the quality representation in DASH can change between
segments.

In DASH, each quality representation is encoded in
variable bit rates (VBRs). VBR varies the amount of
output data per time segment and does not attempt to
control the output bit rate of the encoder, so that the
distortion will not vary significantly [6]. DASH often
uses HTTP byte range mode. In this mode, the byte range
of each segment request can be different. This depends
on the client’s network conditions and playout buffer
levels. Fig. 1 shows an example for three downloads
of the same video title over different Wi-Fi networks,
all with the same quality representation. From the figure
we can notice that due to network conditions variability,
there are differences between the downloads.

In the near future, most Internet network traffic will be
encrypted [7]. Moreover, recently, YouTube has started
to encrypt their video services [8]. As a result, traditional
Deep Packet Inspection (DPI) methods for information
retrieval, in general, and video title classification, in
particular, are not viable.

Video title classification of YouTube streams can be
used by an intelligence agency with access to ISP
networks to gather open source intelligence (OSINT).
By knowing the political agenda of the suspects, the
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Fig. 1: Total megabytes per segment of three downloads
over different Wi-Fi networks of the same video title, all
with the same quality representation.

agency may classify group viewing habits over the ISP
connection. Another usage might be to identify which
individuals are watching a specific type of movie. These
actions may violate personal privacy as they assume
that the connection is secure. On the other hand, these
techniques may be useful for the war against terror.

The remainder of this paper is organized as follows.
In Section II we review related work. In Section III we
present our framework and our suggested algorithms. In
Section IV we evaluate the performance of all algorithms
also under severe network conditions of long delays and
high packet losses at testing times. In Section V we
discuss limitations and possible countermeasures, and,
finally, we conclude in Section VI.

II. RELATED WORK

YouTube analysis was conducted on many aspects
such as YouTube server location [9], [10], comparison
between YouTube and other video sharing services [9],
PC vs. mobile user access patterns [11], QoE [12], traffic
characterization and its DASH implementation [13] and
network analysis [14]–[18].

Many recent works have suggested methods for en-
crypted traffic classification and several surveys have
presented detailed descriptions of the state of the art
methods [19]–[33]. Several works have examined dif-
ferent features such as statistical flow features [19],
Dynamic Time Warping (DTW) [20], session duration
[34]–[36], number of packets in a session [35], [37],
[38], different variance calculations of the minimum,
maximum and average values of inter-arrival packet

time [35], [37], payload size information [37], [39], bit
rate [39], [40], Round-Trip Time (RTT) [40], packet
direction [41] and server sent bit rate [42]. All these
features are not suitable for video streaming classifi-
cation as the payload size in video streaming is often
maximum size, delays in the network are varied, and
re-transmissions cause false packet counts. Our previous
work on encrypted network traffic quality [43] evaluated
those parameters and found that they are not effective
for the HAS problem domain.

Recent works showed that video title classification
of encrypted video streams is possible [29]–[31]. These
works use features such as packet size and the appli-
cation layer information. Saponas et al. [29] uncovered
security issues with consumer electronic devices that
enable information retrieval such as video title classi-
fication. Liu et al. [30] presented a method for video
title classification of RTP/UDP Internet traffic. In [31]
Liu et al. presented an improved algorithm which is
more efficient and demonstrated excellent results on a
bigger dataset with real network conditions. They used
the wavelet transform for constructing unique and robust
video signatures with different compactnesses.

Since these works [29]–[31] were conducted, there
have been several changes in video traffic over the
Internet:

(i) Adaptive byte range selection over HTTP;
(ii) MBR adaptive streaming;

(iii) HTTP version 2 [44].

As previous solutions operated on a time series with the
granularity of single video frames, they do not fit modern
streaming traffic. That is, DFTs and wavelet transforms
capture short-term variations caused by changes of pic-
ture and long-term variations caused by changes of
scene. In modern streaming these cannot be captured
and indeed preliminary results showed that performance
of previous methods [29]–[31] on this new domain are
very poor.

Our preliminary research [45] was the first to identify
video titles of encrypted YouTube streams. We proposed
a nearest neighbor algorithm for this task that performed
well on a small scale dataset. However, when we in-
creased the size of the dataset both in the number of
streams (10,000 vs. 300) and number of video titles
(100 vs. 30) we encountered a decrease in the accuracy
especially under long delays and high packet loss rate.
Additionally, having a large number of streams of titles
that are not in the training dataset (5,000 streams vs.
200 streams) decreased the accuracy results. Therefore,
we developed three additional algorithms. The new al-
gorithms improved robustness to noise. In fact, they are



eager learning algorithms specifically designed for this
task. An eager learning algorithm carries out a learning
process before receiving the test samples whereas a
lazy learning algorithm such as the nearest neighbor
algorithm just stores the training data. It is noteworthy
that in the previous work, we also used a regular eager
learning algorithm (a Support Vector Machine with a
Radial Basis Function kernel) in our comparison which
yielded very poor results as it was not adapted to the
task of YouTube video title classification . Therefore, we
developed algorithms that are both eager and adapted to
the task. We replaced the Radial Basis Function kernel to
our similarity measure. Additionally, we also developed
algorithms that better cope with identifying video titles
that are not in the training dataset as unknowns. These
new algorithms improved results significantly.

The paper’s main contributions are:
• This is the first work that shows that a passive

attacker, sniffing ISP or Wi-Fi open-system net-
work traffic, can identify video titles of encrypted
YouTube video streams over DASH. Inspired by
other works, we exploit traffic patterns and Variable
Bit-Rate (VBR) encoding. We present new methods
that are applicable also to current standards of video
streaming.

• We run thorough a set of experiments which shows
that our classification accuracy is more than 95%.

• We provide a comprehensive dataset that contains
15,000 labeled YouTube streams of 2,100 video
titles. The streams were downloaded from the In-
ternet under real-world network conditions. The
dataset [46] and crawler [47] are available for
download.

III. VIDEO TITLE CLASSIFICATION

The proposed solution architecture goes as follows.
The first module (Section III-A) removes non-YouTube
packets and optionally audio packets. The next module
combines several YouTube packets into a peak. A peak
is defined as a section of traffic where there is silence
before and after. Features are extracted from these peaks
(Section III-B) and passed into a classification algorithm
(Section III-C). It is noteworthy that the input to all
of our classification algorithms is only encrypted HTTP
adaptive video streaming traffic.

A. Preprocessing

First, we divide the traffic into flows based on a five-
tuple representation: {protocol (TCP/UDP), src IP, dst
IP, src port, dst port}. Then, we decide for each flow
whether it is a YouTube flow. This is done based on the

Service Name Indication (SNI) field in the Client Hello
message. If the “googlevideos.com” string is found in
the SNI, the flow is passed to the next module. Note
that the YouTube flows identification can also be carried
out using machine learning techniques [48], [49].

Second, we optionally remove audio packets. In all
our training data, audio bursts were smaller than 400kB,
while video traffic bursts were much larger. The audio
data and the video data can be found in the same 5-tuple
flow and in some cases we cannot distinguish between
them.

Finally, we remove TCP re-transmissions using a TCP
stack [50] as re-transmissions are caused mostly by
network conditions.

B. Feature Extraction

Using raw data in a machine learning method is prob-
lematic as it is non-structured and contains redundant
information (even after a preprocessing step). Thus, there
is a need to build a structured representation of the raw
data that is informative to the specific problem domain.
Building this representation is called feature extraction
[51, Chapter 5.3].

In our solution, the feature extraction is done on the
preprocessed traffic, where non-YouTube flows, audio
packets, and TCP re-transmissions have been removed.
To better understand encrypted YouTube streaming traf-
fic properties, we examined YouTube traffic under dif-
ferent browsers.

Fig. 2 depicts traffic download patterns of auto qual-
ity representation using different browsers (captured by
Wireshark). In the figure we can see periods of data
transmissions with silence (zero bits transmission), be-
fore and after. A period of data transmission is called
a peak. Rao et al. [52] and Ameigeiraset al. [53]
showed the same characteristics (coined in [52], [53] as
“On/Off”).

Therefore we decided to encode every peak of the
stream to a feature. This feature is the Bit-Per-Peak
(BPP); that is, total number of bits in a peak. It is
noteworthy that this feature is different from bit rate.

C. Machine Learning

Supervised classification learning methods learn a
classification function from a set of pre-labeled ex-
amples. The classification function is then used for
classifying unseen test examples. There are two types of
supervised classification learning methods. Lazy learning
algorithms store the training data as is and then apply
a classification function on a new test example where
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Fig. 2: Typical examples of traffic flows of auto mode downloads of the same movie using various browsers (Safari,
Chrome, Firefox and Explorer) under various network conditions. The two first figures (from left) flows were
downloaded via ADSL connection while the two at the right were downloaded via a WiFi connection. Note that
differences between flows may be caused by auto mode, network conditions, player algorithm, etc.

the classification function is parameterized with the pre-
labeled training examples. Eager learning algorithms, on
the other hand, carry out a learning process on the pre-
labeled training examples. Eager learning algorithms of-
ten perform better as the offline learning stage increases
robustness to noise.

In this work, we adapt one lazy machine learning
algorithm and two eager machine learning algorithms for
the specific task of YouTube streams title classification.

The lazy machine learning algorithm we adapt is the
nearest neighbor algorithm [54]. In this algorithm, the
classification function computes similarities between a
new test sample to all pre-labeled examples. The test
sample is then assigned to the class of the most similar
example from the training data.

Our adaption of the nearest neighbor algorithm uses
a similarity function which fits to YouTube streams
classification. Additionally, we add a classification rule
that assigns unknown to test samples if they are not
similar at all to any training example.

The first eager machine learning algorithm we adapt
is the nearest neighbor to class algorithm [55]. This
algorithm offline learning stage computes a single rep-
resentation to all samples of the same class. That is,
instead of storing all the training examples as is, all
training examples of the same class are transformed into
one sample.

We suggest two adaptions of this algorithm that differ
in the transformation that is applied to training examples
of the same class. The similarity function and unknown
mechanism are the same as in our nearest neighbor
algorithm adaptation.

The second eager machine learning algorithm we
adapt is the Support Vector Machine (SVM) [56]. A
binary linear SVM models training examples as points in
space, and then divides the space using a hyperplane to
give the best separation among the two classes. A non-

linear SVM first projects the data into a different feature
space. We use the similarity as features [57] projection
where each sample is mapped into a vector of similarities
to the training examples. For multiclass classification
problems, that is, when there are more than two classes
there are several extensions of the binary SVM, we use
the one-vs-all adaption which has excellent performance
[58]. This method trains a separate hyperplane for all
classes. A test sample is then assigned to the class that
won in most of the classifiers.

Our adaptions of this algorithm are the usage of the
nearest neighbor to class transformation of samples, the
similarity function and finally the unknown mechanism.
We show that this algorithm strictly generalizes our
adaption of the nearest neighbor to class algorithm. The
ability of the learner to adjust weights of each title in
the learning process increases its robustness to noise.

In what follows, we give detailed explanations of
the four adapted algorithms. We recall that after the
preprocessing and feature extraction, each video stream
(number j of video title i) is represented by Sij , a
set of Bit-Per-Peak (BPP) features (no duplicates). It
is noteworthy that each BPP-set may have different
cardinality. Table I summarizes symbols used in the
algorithm explanations.

1) Nearest Neighbor (NN) Algorithm: The nearest
neighbor similarity score between two BPP-sets, S and
S ′, is the cardinality of the intersection set:

sim(S,S ′) = |S ∩ S ′| (1)

At test time, each video stream BPP-set, Stest, is
classified as the video title i, that has the maximum
similarity score to one of the title training stream BPP-
sets or as unknown if all similarities are zero:



TABLE I: List of Abbreviations

BPP Bit-Per-Peak
i Video title number
j Stream number
n Number of video titles in the training dataset
mi Number of stream samples per title i in the training

dataset
S,S′

BPP-sets
Sij A BPP-set of stream number j of title i
Stest A test BPP-set

Ti
A BPP-set which is a
union of all training streams of video i (Eq. 4)

Ui
A BPP-set which is a
union of all training streams of video i
minus BPPs of other video titles (Eq. 7)

∀ 1 ≤ i ≤ n, si =
mi
max
j=1

sim(Stest,Sij) (2)

y(Stest) =


n

argmax
i=1

si if
(

n
max
i=1

si
)
>0

unknown otherwise
(3)

2) Nearest Neighbor to Class (NNC) Algorithm: In
the nearest neighbor to the class algorithm, each video
title i in the training is represented by a single BPP-set,
Ti, which is a union of all its mi video stream BPP-sets
(no duplicates):

Ti = ∪mi
j=1Sij (4)

As in the nearest neighbor algorithm, the similarity
score is the cardinality of the intersection set. In this
case, the similarity is between a BPP-set of a single
stream and the BPP-set of all streams of a title:

sim(S, Ti) = |S ∩ Ti| (5)

At test time, each video stream set, Stest, is classified
as the video title i, that has the maximum similarity score
to one of the n video title BPP-sets or as unknown if all
similarities are zero:

y(Stest) =
n

argmax
i=1

sim(Stest, Ti) if
(

n
max
i=1

sim(Stest, Ti)
)
>0

unknown otherwise

(6)

3) Nearest Neighbor to Class Unique (NNCU) Algo-
rithm: As in the nearest neighbor to class algorithm,
in the nearest neighbor to class unique algorithm, each
video title i in the training is represented by a single

BPP-set. In the nearest neighbor to class unique algo-
rithm, the set is a union of all its mi video stream BPP-
sets (no duplicates) minus BPP values that appear in sets
of other video titles:

Ui = Ti \ {∪n
i′=1,i′ 6=iTi′} (7)

As in the nearest neighbor to class algorithm, the
similarity score is the cardinality of the intersection set:

sim(S,Ui) = |S ∩ Ui| (8)

At test time, each video stream set, Stest, is classified
as the video title i, that has the maximum similarity score
to one of the n video title BPP-sets or as unknown if all
similarities are zero:

y(Stest) =
n

argmax
i=1

sim(Stest,Ui) if
(

n
max
i=1

sim(Stest,Ui)
)
> 0

unknown otherwise

(9)

4) Similarities as Features Support Vector Machine
(SFSVM) Algorithm: In this algorithm, each video
stream is represented by a feature vector which is the
video stream similarity to all n video title sets (thus it
is an n-dimensional vector). Where the similarity is the
same as in the nearest neighbor to class algorithm, Eq.
5:

#»x (S) = [sim(S, T1), . . . , sim(S, Tn)] (10)

Thus, the training set is an (
∑n

i=1mi)× n matrix of
all training stream feature vectors:



sim(S11, T1) . . . sim(S11, Tn)
...

. . .
...

sim(S1m1 , T1) . . . sim(S1m1 , Tn)
...

. . .
...

sim(Sn1, T1) . . . sim(Sn1, Tn)
...

. . .
...

sim(Snmn , T1) . . . sim(Snmn , Tn)


(11)

We learn one vs. all Support Vector Machines (SVMs)
[56], [58]. That is, we learn a classifier for each video
title i that classifies whether it is this title or any of
the other titles. The classifiers are n-dimensional weight
vectors and at test time, each video stream set, Stest, is
classified as the video title i, which maximizes the dot



TABLE II: Algorithm training and testing samples

Algorithm Training Sample Testing Sample
Nearest Neighbor Sij Stest
Nearest Neighbor to Class Ti Stest
Nearest Neighbor to Class
Unique

Ui Stest

Similarities as Features
Support Vector Machine

#»x (Sij) = [sim(Sij , T1), . . . , sim(Sij , Tn)] #»x (Stest) = [sim(Stest, T1), . . . , sim(Stest, Tn)]

product between the class weight vector and the features
vector or as unknown if all similarities are zero:

#»x (Stest) = [sim(Stest, T1), . . . , sim(Stest, Tn)] (12)
y(Stest) =

n
argmax

i=1
( # »wi · #»x (Stest)) if

(
n

max
i=1

sim(Stest, Ti)
)
>0

unknown otherwise
(13)

The SVM regularization parameter C and γ were
found with 5-fold cross-validation on the training dataset
over the following sets accordingly: {2−5, 2−3, ..., 215}
and {2−15, 2−13, ..., 23}.

It is noteworthy that if we learn the following weight
vectors:

∀ 1 ≤ i ≤ n, # »wi = [0, . . . ,

i
^
1 , . . . , 0] (14)

This exactly models the nearest neighbor to the class
algorithm. Thus, this algorithm generalizes the nearest
neighbor to the class algorithm.

A summary of algorithm training and testing samples
is in Table II.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the proposed encrypted
HTTP adaptive video streaming title classification algo-
rithms. First, we describe the dataset in IV-A. Then we
report experimental results in Section IV-B.

A. Dataset

We recall that we want to identify and differentiate
between a set of known video titles, whereas in testing
we might observe a much larger group of video titles. For
this, we collected a dataset that contains 10,000 YouTube
streams (that were downloaded via a real-world Internet
connection during a period of a month over different
real-world network conditions) of 100 video titles (100
streams per video title). As it is not reasonable that
a group of people will watch only the above “target”

video titles, we added 5,000 streams of 2,000 other video
titles which are not included in the “target” video titles
set. These titles are used as the unknown titles in the
evaluation.

The video titles used in this study are popular
YouTube videos from different categories such as news,
sports, nature, video action trailers, and GoPro videos. In
this study we decided to use the Chrome browser since
it is the most popular browser on the market and its
popularity is growing [59]. It is noteworthy that also in
other browsers, YouTube streams have peaks or “on/off”
traffic patterns [43], [52], [53]. Therefore using other
browsers is also possible.

We used the default auto mode of the YouTube
player (the player decides which quality representation
to download based on estimation of the client network
conditions). We used the Selenium web automation tool
[60] with ChromeDriver [61] for the crawler, so it will
simulate a user video download in exactly the same
manner a normal user behaves. We used Ad-block Plus
[62] to eliminate advertisements only in the training
datasets. This work assumes that video advertisement
exists in the network in real scenarios. We do not assume
that the advertisement can be distinguished from the
viewed video on the encrypted network traffic level.
From our preliminary work [45] we found that the video
advertisement is distributed in different network flows
and the video title download is distributed by several
parallel network flows. Therefore, when testing unknown
titles (titles that are not in the training titles) we do
not filter out the video advertisement. Our algorithms
classify each flow separately and we do not assume any
prior knowledge about how many different flows exist
per download. As a video advertisement is a different
flow we can classify it as unknown video title (thus,
effectively, the number of unknown is higher than 2,000).

We offer the following training/testing datasets:(1)
TrainKnown - The dataset contains 9,000 video streams
of 100 video titles for training the different classifiers; (2)
TestKnown - The dataset contains 1,000 video streams
(different also from the training streams) of the same
100 video titles from the TrainKnown data set; (3)
TestUnknown - The dataset contains 5,000 (unknown)
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Title-Unknown-Error: predict video title unknown while it is video title i from the training data
Title-Title-Error: predict video title i while it is video title i′ 6= i from the training data
Title-Accuracy: predict the right video title

Fig. 3: Title-Accuracy, Title-Title-Error and Title-Unknown-Error results for different training data set sizes and
different learning algorithms. We can see that all algorithms (see Table III for algorithm acronyms) were able to
identify the video title of an encrypted HTTP adaptive stream (HAS) with very high Title-Accuracy.

video streams of 2,000 video titles. The video titles
are not from the TrainKnown data set. The dataset
was recorded without ad-block and thus the streams
also contain advertisements;(4) TestKnownDelay - The
dataset contains 400 video streams of 10 video titles
(titles taken from the TrainKnown data set); each was
downloaded with an additional added drop percentage
from the following list: {100, 300, 600}[ms];(5) Test-
KnownDrop - The dataset contains 400 video streams
of 10 video titles (titles taken from the TrainKnown data
set), each was downloaded with an additional added drop
percentage from the following list: {1%, 3%, 6%}. The
dataset [46] and crawler [47] are available for download.

B. Experimental Results

We recall that our classifiers have two types of predic-
tions: a video title 1 ≤ i ≤ n and unknown. Unknown
means that the classifier predicts that the given stream
video title is not in the training set. We use the following
evaluation metrics:
Title-Accuracy Number of times that the classifier pre-

dicted video title i and it was true, divided by the
total number of streams in the test set that their title
is in the training set.

Title-Title-Error Number of times that the classifier
predicted video title i and it was false, divided by
the total number of streams in the test set that their
title is in the training set.



Title-Unknown-Error Number of times that the classi-
fier predicted video title unknown while it was a
video title from the training set, divided by the total
number of streams in the test set that their title is
in the training set.

Unknown-Accuracy Number of times that the classifier
predicted video title unknown and it is indeed not
a video title from the training set, divided by the
total number of unknown streams in the testing set.

Unknown-Title-Error Number of times that the classi-
fier predicted video title unknown while it was a
video title from the training set, divided by the total
number of unknown streams in the testing set.

It should be noted that we do not have Unknown-
Unkown-Error as we do not try to differentiate between
unknown video titles.

We first report results using variable training dataset
sizes. For all following experiments, we used the Test-
Known data set. For training, we used the other 9,000
streams (90 streams per video title from the dataset),
6,000 streams (60 streams per video title from the
dataset), 3,000 streams (30 streams per video title from
the data set) and 500 streams (5 streams per video
title from the dataset). All the test video streams were
different from the ones that were used in the training
phase, because of network conditions while streaming
video from YouTube. In these experiments, the testing
set did not contain streams of video titles that were not
in the training data. We compared all algorithms with
our features and also experimented with and without the
removal of audio features.

The results of these experiments are depicted in Fig.
3. Algorithm acronyms can be found in Table III. There
are several observations. First, all algorithms were able
to accurately identify the video title of an encrypted
HTTP adaptive stream (HAS). Title-Accuracy was higher
than 90% using 60 or more streams per video title (as
there are 100 classes a chance classifier Title-Accuracy
is only 1% for this task). Even using only 5 streams
per video title, NN+A, NNC+A and SFSVM+A Title-
Accuracy was larger than 90%. Using also BPPs of audio
peaks the Title-Accuracy was higher than 95% using 90
streams per video title, but the Title-Title-Error which
is a more severe error than the Unknown-Title-Error
was also higher. The NNCU algorithm Title-Accuracy
was lower in comparison to the other algorithms and
moreover without the audio features. But, the Title-
Accuracy is still high (89% or higher for 30 streams per
video title or more, and 78.7% for 5 streams per video
title) and the Title-Title-Error were almost eliminated.

We also experimented with the classifiers (NN, NNC
and SFSVM) with 2,000 video titles that were not in

NN-A
NNC-A

SFSVM-A

NN+A
NNC+A

SFSVM+A

NNCU-A NNCU+A
60%

70%

80%

90%

100%
97.8

75.6

100.0 100.0

U
nk

no
w

n-
A

cc
ur

ac
y

Fig. 4: The Unknown-Accuracy for all algorithms. NN,
NNC and SFSVM classifiers are equivalent for the task
of unknown prediction.

the training set. The Unknown-Accuracy rate (predict-
ing unknown video title when it is not in the train-
ing dataset) can be seen in Fig. 4. We can see that
NN+A NNC+A, SFSVM+A, had the lowest Unknown-
Accuracy, although it is still much higher than chance.
We can also see that removing the audio features im-
proves Unknown-Accuracy considerably to 97.8%. Fi-
nally, NNCU, with and without audio, identified all
unknowns streams.

As network conditions vary, we also tested our algo-
rithms with additional LAN network delay and packet
loss on test time. That is, only the testing data is changed
and not training data. The additional delay and drop
affects the client player and causes it to select different
(lower) representations. The delays and packet loss were
added using the clumsy application [63].

The results of additional LAN network delay are
depicted in Fig. 5. We can see that using the largest
training dataset the SFSVM+A method outperformed all
other methods and achieved Title-Accuracy of more than
80% even under severe network delays of 600msec. We
conjecture that using an eager algorithm with a learning
phase and the usage of distance to class made this algo-
rithm robust to changes. We can see that NNC+A Title-
Accuracy was also high. Training with less streams, the

TABLE III: List of Algorithm Acronyms

NN Nearest Neighbor
NNC Nearest Neighbor to Class
NNCU Nearest Neighbor to Class Unique
SFSVM Similarities as Features Support Vector Machine
-A without audio features
+A with audio features
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Fig. 5: Title-Accuracy, Title-Title-Error and Title-Unknown-Error results for different additional LAN network delay,
different training data set sizes, and different learning algorithms.

algorithms NNC+A and SFSVM+A are comparable and
both outperformed all other algorithms. Like previous
results the NNCU algorithm and not using audio features
eliminated Title-Title-Error. Out of all algorithms with
low Title-Title-Error, NNCU+A Title-Accuracy was the
best.

The results of additional packet loss are depicted
in Fig. 6. We can see that using the largest training
dataset the SFSVM+A method slightly outperformed all
other methods and achieved Title-Accuracy of more than
70% even under severe packet loss of 6%. NNC+A,
NNCU+A, NN+A all also exhibited good performance.
Training with less streams, method Title-Accuracy was
generally reduced. Similar to previous results the NNCU
algorithm and not using audio features almost eliminated

Title-Title-Error. Again, NNCU+A Title-Accuracy was
the best.

V. POSSIBLE COUNTERMEASURES AND LIMITATIONS

Users and service providers might believe that by us-
ing the right encryption and authentication mechanisms,
their communications are secure. However, this is not
always true. As presented in this paper, it is possible to
develop classifiers for TLS/SSL encrypted traffic that are
able to identify the video title from video HTTP adaptive
streams (HAS) from websites such as YouTube. The
contribution of this paper was to investigate the extent
to which it is feasible to identify the video title from
a set of videos while also identifying new video titles
as unknown. While it is out of the scope of the paper
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Fig. 6: Title-Accuracy, Title-Title-Error and Title-Unknown-Error results for different training data set sizes, different
additional packet loss percentage and different learning algorithms.

to investigate possible countermeasures, we discuss it
shortly following some related issues.

A possible countermeasure can be a padding tech-
nique which may be effective against traffic analy-
sis approaches. However, it has to be considered that
padding countermeasures are already standardized in
TLS, explicitly to frustrate attacks on a protocol that are
based on analysis of the lengths of exchanged messages
[21]. The intuition is that the information is not hidden
efficiently, and the analysis of these features may still
allow information leakage.

We strongly believe that it is not trivial to propose
effective countermeasures to the attack we showed in
this paper. Indeed, it is the intention of the authors to

highlight a problem that is becoming even more alarming
after the revelation of mass surveillance programs that
are nowadays adopted by governments and nation states.

Supervised machine learning algorithms have several
limitations. One of the limitations is that a labeled train-
ing dataset has to be collected. In this paper, we automate
the collection of the training dataset thus somewhat
mitigating this limitation.

Another limitation of regular machine learning algo-
rithms is that they are not able to recognize classes that
have not been used during the training phase. In this
paper, we adapted machine learning algorithms to be able
to identify unknown events as such.

Finally, in machine learning, different conditions in



testing time might hinder classification. The changes can
be changes in network conditions and also in applications
and protocols. In this paper we tested testing sets with
different network conditions than the training ones and
the classification accuracy was only slightly reduced.

VI. CONCLUSIONS

This paper showed that the video title of encrypted
HTTP adaptive streams such as YouTube can be iden-
tified with high accuracy, even under severe network
conditions of long delays and high packet losses at
testing time. We also showed that our algorithms are
able to classify video titles that are not in the training as
unknown. To the best of our knowledge this is the first
work to show this. A conclusion that can be drawn from
this paper is that although YouTube uses HTTPS, which
is assumed to be secure and modern DASH protocol, it
is still not enough to protect viewing habits.

We presented several algorithms for this task and com-
pared them on a large real-world traffic dataset. Overall,
having enough training data the Similarities as Features
Support Vector Machine with Audio (SFSVM+A) algo-
rithm achieved the best accuracy even under long delays
and high packet loss rate. If predicting the wrong title is
an acute error we recommend to use the Nearest Neigh-
bor to Class Unique with Audio (NNCU+A) algorithm
which instead reports unknown on almost all of its errors
and still has relatively high accuracy. A defense against
this privacy hole would necessitate a differentiation of
the peak sizes. To the best of our knowledge, this would
require changes both from the client and the server in
the browser and the network stack implementation, and,
in particular, in the TCP and HTTP protocols.

The dataset [46] and crawler [47] are provided for
future research.
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