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Abstract. We present a new histogram distance, the Tangent Earth
Mover’s Distance (TEMD). The TEMD is a generalization of the Earth
Mover’s Distance (EMD) that is invariant to some global transforma-
tions. Thus, like the EMD it is robust to local deformations. Additionally,
it is robuster to global transformations such as global translations and
rotations of the whole image. The TEMD is formulated as a linear pro-
gram which allows efficient computation. Additionally, previous works
about the efficient computation of the EMD that reduced the number
of variables in the EMD linear program can be used to accelerate also
the TEMD computation. We present results for image retrieval using the
Scale Invariant Feature Transform (SIFT) and color image descriptors.
We show that the new TEMD outperforms state of the art distances.

1 Introduction

Histograms are ubiquitous tools in numerous computer vision and machine learn-
ing tasks. It is common practice to use distances such as L2 or χ2 for comparing
histograms. This practice assumes that the histogram domains are aligned. How-
ever this assumption is violated through quantization, shape deformation, light
changes, global geometric transformations, etc.

The Earth Mover’s Distance (EMD) [1] is a cross-bin distance that addresses
this alignment problem. EMD is defined as the minimal cost that must be paid
to transform one histogram into the other, where there is a “ground distance”
between the basic features that are aggregated into the histogram. The EMD as
defined by Rubner is a metric only for normalized histograms. However, Pele and

Werman [2] suggested ÊMD and showed that it is a metric for all histograms.
A shortcoming of the EMD is that it does not differentiate between a large

number of non-structured deformations and a global deformation. For example,
it cannot differentiate between the case that every edgel translated in a random
direction and the case that all edgels translated in the same direction.

We propose the Tangent Earth Mover’s Distance (TEMD). This new dis-
tance does not penalize some global-coherent transformations (e.g. global trans-
lations). The TEMD is formulated as a linear program which allows efficient
computation. Additionally, previous works (e.g. [3, 4]) that reduced the num-
ber of variables in the EMD linear programming formulation for specific ground
distances can be used to accelerate also the TEMD computation.

Notation: Small letters indicate scalars, capital letters indicate matrices,
small letters with an arrow indicate vectors and calligraphic font indicate sets.
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2 Previous Work

Early Work Early work using cross-bin distances for histogram comparison can
be found in [5–8]. Shen and Wong [5] suggested unfolding two integer histograms,
sorting them and then computing the L1 distance between the unfolded his-
tograms. To compute the modulo matching distance between cyclic histograms
they took the minimum from all cyclic permutations. This distance is equivalent
to the EMD between two normalized histograms. Werman et al. [6] showed that
this distance is equal to the L1 distance between the cumulative histograms.
They also proved that matching two cyclic histograms by only examining cyclic
permutations is optimal. Peleg et al. [8] suggested using the EMD for grayscale
images and using linear programming to compute it.

Generalization of EMD for non-normalized histograms Rubner et
al. [1] generalized the definition of the EMD to non-normalized histograms and
coined the name EMD. Their formulation searches for the optimal partial match-
ing. Pele and Werman [2] proposed a different formulation of the EMD for non-

normalized histograms coined ÊMD. This formulation was shown to outperform
Rubner’s definition in many cases. Additionally, unlike Rubner’s definition, the

ÊMD is a metric. We give these definitions in section 3.

EMD algorithms Rubner et al. [1] computed the EMD using a specific lin-
ear programming algorithm - the transportation simplex. The algorithm’s worst
case time complexity is exponential. Practical run time was shown to be super-
cubic. Orlin’s algorithm [9] time complexity is O(n3 log n). Werman et al. [7]
proposed an O(m logm) algorithm for finding a minimal matching between two
sets of m points on a circle. The algorithm was adapted by Pele and Werman [2]
to compute the EMD between normalized histograms with a linear time com-
plexity. Rabin et al. [10] showed that the algorithm can be used for any convex
cost of the geodesic distance along the circle. Pele and Werman [2] proposed a

linear-time algorithm that computes the ÊMD with a ground distance of 0 for
corresponding bins, 1 for adjacent bins and 2 for farther bins and for the extra
mass for cyclic one-dimensional histograms. Delon et al. [11] introduced a class
of local indicators that enables the computation of the EMD for general concave
ground distances on the line in the unitary case (each histogram bin contains
either zero or one) with time complexity O(n2). For general histograms the time
complexity is O(n3) but often it is more efficient. Ling and Okada proposed
EMD-L1[12]; i.e. EMD with L1 as the ground distance. They showed that if
the points lie on a Manhattan network (e.g. an image), the number of variables
in the LP problem can be reduced from O(n2) to O(n). To execute the EMD-
L1 computation, they employed a tree-based algorithm, Tree-EMD. Tree-EMD
exploits the fact that a basic feasible solution of the simplex algorithm-based
solver forms a spanning tree when the EMD-L1 is modeled as a network flow
optimization problem. The worst case time complexity is exponential. Empiri-
cally, they showed that this algorithm has an average time complexity of O(n2).
Gudmundsson et al. [13] also put forward this simplification of the LP problem.
They suggested an O(n logd−1 n) algorithm that creates a Manhattan network
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for a set of n points in Rd. The Manhattan network has O(n logd−1 n) vertices
and edges. Thus, using Orlin’s algorithm [9] the EMD-L1 can be computed with
a time complexity of O(n2 log2d−1 n). Pele and Werman [4] presented a new for-

mulation of the EMD or the ÊMD with a robust thresholded ground distance.
This formulation reduces the number of variables considerably. Additionally,

ÊMD distances with thresholded ground distances were shown to considerably

outperform EMD or ÊMD distances with non-robust, non-thresholded ground
distances. The advantages of using robust distances as ground distances were
also shown in [1, 14, 15]. Thus, we will use this formulation in our experiments
and we give its definition in section 3.

Distances with invariance or robustness to global transformations

Simard et al. [16] proposed the tangent distance. The method uses linear approx-
imations of global deformations. That is, a global deformation is approximated
with the addition of a tangent vector. The distance is defined as the minimum
L2 norm between the modified vectors. Our method also uses tangent vectors
to approximate global deformations. However, unlike the tangent distance, we
combine the global deformation with the EMD which is more robust than the L2

to deformations that are not global. Cohen and Guibas [17] studied the problem
of computing EMD which is invariant to transformation sets. The work focused
on transformations that change the ground distance and thus the optimization
problem becomes non-convex. They also studied the EMD where the histograms
scale. Then, the value of the EMD is a decreasing function of the scale factor. In
our work, we study transformations that do not change the total masses. Zhang
et al. [18] modeled the transformation between two image attributes as a flow
problem. They imposed soft affine constraints on the flow itself. Our method
does not assume that the transformation should be fully affine. Zhang et al. also
proposed adding a soft constraint that helps in handling clutter. Our method is
orthogonal to the Zhang’s method and the combination of both is an interesting
future work.

3 The Earth Mover’s Distance

The Earth Mover’s Distance (EMD) [1] is defined as the minimal cost that must
be paid to transform one histogram into the other, where there is a “ground
distance” between the basic features that are aggregated into the histogram.

Given two histograms
−→
h1,

−→
h2 ∈ Rn+ and a ground distance between the

histograms bins D ∈ R(n×n)+, the EMD as defined by Rubner et al. [1] is:

EMDD(
−→
h1,

−→
h2) = min

F

(
∑

i,j
FijDij)

(
∑

i,j
Fij)

s.t
∑

j

Fij ≤
−→
h1i

∑

i

Fij ≤
−→
h2j

∑

i,j

Fij = min(
∑

i

−→
h1i,

∑

j

−→
h2j) Fij ≥ 0

(1)

where {Fij} denotes the flows. Each Fij represents the amount transported from
the ith supply to the jth demand.
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Pele and Werman [2] suggested ÊMD, which also depends on a histogram
sums difference penalty, c:

ÊMDD,c(
−→
h1,

−→
h2) = (min

F

∑

i,j

FijDij) + |
∑

i

−→
h1i −

∑

j

−→
h2j |c

s.t
∑

j

Fij ≤
−→
h1i

∑

i

Fij ≤
−→
h2j

∑

i,j

Fij = min(
∑

i

−→
h1i,

∑

j

−→
h2j) Fij ≥ 0

(2)

Pele and Werman [2] proved that ÊMD is a metric for any two histograms if
the ground distance is a metric and c ≥ 0.5maxi,j Dij . The metric property
enables fast algorithms for nearest neighbor searches [19, 20] and fast clustering
[21]. Because of these advantages we will use the Pele and Werman definition in
the remainder of this paper.

As we are using the Pele and Werman [4] formulation of the ÊMD with a
thresholded ground distance, we give its description here. For each histogram
bin i we have a set of neighbors N (i) where the ground distance between i and j
is Dij and smaller than the threshold r. The ground distance between all other
bins is the threshold. The formulation has flow variables only for the neighbors

and add one transshipment bin, 0, which connects all the bins of histogram
−→
h1

to all the bins of histogram
−→
h2 through it:

ÊMDD,N ,r,c(
−→
h1,

−→
h2) = (min

F

∑

i

(
∑

j∈N (i)

FijDij + Fi0r)) + |
∑

i

−→
h1i −

∑

j

−→
h2j |c

s.t
∑

j∈N (i)

Fij + Fi0 ≤
−→
h1i

∑

i∈N (j)

Fij + F0j ≤
−→
h2j

∑

i

Fi0 =
∑

j

F0j

∑

i

(
∑

j∈N (i)

Fij + Fi0) = min(
∑

i

−→
h1i,

∑

j

−→
h2j) Fij ≥ 0

(3)

4 The Tangent Earth Mover’s Distance (TEMD)

In the TEMD, each global transformation is represented using a tangent vector
−→
l ∈ Rn where

∑
i

−→
l i = 0. Adding α

−→
l to a histogram

−→
h , pre-flows α

∑
i

−→
h i

between its bins. For an example of a tangent vector of a histogram see Fig.
1. We use m types of such vectors (e.g. translation in x-axis, y-axis) and put
them all in a global transformations matrix L ∈ Rn×m. We use these matrices
to encode invariance to global transformations for the TEMD.

Given two histograms
−→
h1,

−→
h2 ∈ Rn+, their corresponding global transfor-

mations matrices L1, L2, a ground distance between the histograms bins D ∈
Rn×n+, the histogram sums difference penalty, c, the TEMD is defined as:
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TEMDD,c({
−→
h1, L1}, {

−→
h2, L2}) =

( min
F,

−→
α1,

−→
α2

∑

i,j

FijDij) + |
∑

i

−→
h1i −

∑

j

−→
h2j |c

s.t
∑

j

Fij ≤
−→
h1i +

∑

t

−→
α1tL1it

∑

i

Fij ≤
−→
h2j +

∑

t

−→
α2tL2jt

∑

i,j

Fij = min(
∑

i

−→
h1i,

∑

j

−→
h2j) Fij ≥ 0

−→
α1t ≥ 0

−→
α2t ≥ 0

(4)

Like the EMD, TEMD is defined as the minimal cost that must be paid
to transform one histogram into the other. The difference is that in EMD the
transformation was direct from one histogram into the other where there is
a “ground distance” between the basic features that are aggregated into the

histogram. In TEMD, histograms
−→
h1 and

−→
h2 are first transformed into

−→
h1+L1

−→
α1

and
−→
h2+L2

−→
α2 respectively. The flow positivity constraints and the flow feasibility

constraints ensure also that these transformed histograms are also non-negative.
The TEMD is a linear program. Previous works (e.g. [3, 4]) that reduced the

number of variables in the EMD linear programming formulation for specific
ground distances (see also Eq. 3) can be used to accelerate also the TEMD
computation. To solve the linear program we use the mosek package [22].
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Fig. 1. An example of a histogram and its tangent vector for translation in the x-axis.

5 Results

We present results using the newly defined TEMD and state of the art distances,
for image retrieval using SIFT-like descriptors and color image descriptors. We

use the Pele and Werman benchmark [4]. They have compared ÊMD with a
thresholded ground distance to state of the art histogram distances such as
SIFTDIST[2], EMD-L1[12], χ2 and the L1 and L2 norms. They have found that

its performance was the best. We show that TEMD outperforms ÊMD (both
with a thresholded ground distance) and the tangent distance [16].

For completeness we now describe the benchmark that was used by Pele
and Werman [4]. The benchmark contains 773 landscape images from the Corel
database from 10 classes. The number of images in each class ranges from 50
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to 100. The benchmark has 5 query images for each class (images 1, 10, . . . , 40).
We searched for the 50 nearest neighbors for each query image (without the
query). We computed the distance of each image to the query image and its
reflection and took the minimum. We present results for two types of image
representations: SIFT-like descriptors and small L*a*b* images.

SIFT-like Descriptors The representation is a 6 × 8 × 8 SIFT descriptor
[23] computed globally on a color-edge [14] image called CSIFT. See [4] for more
details. For EMD and TEMD we used the same ground distance that was used
in [4]. That is, let b = 8 be the number of orientation bins, the ground distance
between two CSIFT bins (xi, yi, oi) and (xj , yj , oj) is:

Dij = min
(

(

||(xi, yi)− (xj , yj)||2 +min(|oi − oj |, b− |oi − oj |)
)

, 2
)

(5)

We experimented with two values of histogram sums difference penalty c =

maxij d(i, j) = 2 (as in [4]) and c =
maxij d(i,j)

2 = 1. The EMD is a metric for the
ground distance that was chosen and for both penalties. We also experimented
with the tangent distance [16] denoted TAN-L2. Finally, we also experimented
with a tangent distance which is coupled with the L1 norm instead of the L2

norm. This distance is denoted as TAN-L1. TAN-L1 is almost identical to TEMD
with histogram sums difference penalty c = 1 and a ground distance of 2 times
the Kroncker delta. The only difference is that the flow constraints in TEMD
ensure that the histograms will not become negative after the tangent transfor-
mation. In practice the results were identical for both of these distances. For all
tangent-type distances (TEMD, TAN-L2, TAN-L2) we used 4 tangent vectors
for each CSIFT: the CSIFT descriptor minus a CSIFT descriptor where the x/y
coordinates were shifted by ±1 (we added empty bins to the border). The results
are presented in Fig. 2(a). TEMD with histogram sums difference penalty c = 1
outperformed all other distances.

L*a*b* Images The second type of image representation is a small L*a*b*
image (as in [4]). Each image was resized to 32×48 and converted to the L*a*b*
space. Each possible color for each possible pixel is a histogram bin. Thus the
histograms are sparse histograms with 32 × 48 ones for the image pixels and
((32×48)×2563)− (32×48) zeros. For such sparse histograms the results using
bin-to-bin distances such as L1, L2, TAN-L1 or TAN-L2 are very poor. For EMD
and TEMD we used the same ground distance that was used in [4]. That is, the
ground distance between two pixels (xi, yi, Li, ai, bi), (xj , yj , Lj , aj , bj) is:

Dij = min(||(xi, yi)− (xj , yj)||2 +∆00((Li, ai, bi), (Lj , aj , bj)), 20) (6)

where ∆00 is the CIEDE2000 color difference [24, 25]. As the histogram sums
equal 32×48, the histogram sums difference penalty has no effect. For TEMD we
used 4 tangent vectors for each image histogram: the original histogram minus
a histogram which is the result of shifting the x/y coordinates of the original
histogram by ±1 (we added empty bins to the border). We present results in
Fig. 2(b). As shown, TEMD outperformed EMD.
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Fig. 2. Normalized area under the curve for retrieval (between 0 and 100, smaller
than 50 for randomized classifier as there are 10 classes) using the CSIFT descriptors
(left) and the L*a*b* images (right). Results for any bin-to-bin distance (e.g. TAN-L1,
TAN-L1) using the L*a*b* images are not shown as they are very poor.

6 Conclusions and Future Work

We presented a new distance, the Tangent Earth Mover’s Distance (TEMD).
This distance is both robust to small non-structured deformations and is in-
variant to some global deformations. Experimental results show that TEMD
outperforms state of the art distances on the well studied Corel dataset.

Future works include finding the TEMD Barycenter (as was done for the
EMD by Rabin et al. [26]), TEMD clustering (as was done for the EMD by Ricci
et al. [27] and Wagner and Ommer [28] and for the tangent distance by Hastie et
al. [29]) and learning the TEMD parameters (as was done for the EMD by Cuturi
and Avis [30] and Wang and Guibas [31]). Finally, assuming a-priori invariance
to some global deformations might be a too restrictive prior. Instead, it will be
interesting to penalize these transformations and thus achieve robustness instead
of invariance. This will also allow us to learn global transformations penalties.
The method code is available at the first author homepage.
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