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Abstract. We present a new metric between histograms such as SIFT
descriptors and a linear time algorithm for its computation. It is common
practice to use the L2 metric for comparing SIFT descriptors. This prac-
tice assumes that SIFT bins are aligned, an assumption which is often
not correct due to quantization, distortion, occlusion etc.
In this paper we present a new Earth Mover’s Distance (EMD) variant.
We show that it is a metric (unlike the original EMD [1] which is a metric
only for normalized histograms). Moreover, it is a natural extension of
the L1 metric. Second, we propose a linear time algorithm for the com-
putation of the EMD variant, with a robust ground distance for oriented
gradients. Finally, extensive experimental results on the Mikolajczyk and
Schmid dataset [2] show that our method outperforms state of the art
distances.

1 Introduction

Histograms of oriented gradient descriptors [3–6] are ubiquitous tools in numer-
ous computer vision tasks. One of the most successful is the Scale Invariant
Feature Transform (SIFT) [3]. In a recent performance evaluation [2] the SIFT
descriptor was shown to outperform other local descriptors. The SIFT descriptor
has proven to be successful in applications such as object recognition [3, 7–9],
object class detection [10–12], image retrieval [13–16], robot localization [17],
building panoramas [18] and image classification [19].

It is common practice to use the L2 metric for comparing SIFT descriptors.
This practice assumes that the histogram domains are aligned. However this
assumption is violated through quantization, shape deformation, detector local-
ization errors, etc. Although the SIFT algorithm has steps that reduce the effect
of quantization, this is still a liability, as can be seen by the fact that increasing
the number of orientation bins negatively affects performance [3].

The Earth Mover’s Distance (EMD) [1] is a cross-bin distance that addresses
this alignment problem. EMD is defined as the minimal cost that must be paid
to transform one histogram into the other, where there is a “ground distance”
between the basic features that are aggregated into the histogram. There are two
main problems with the EMD. First, it is not a metric between non-normalized
histograms. Second, for a general ground distance, it has a high run time.



2 Pele, Werman

In this paper we present an Earth Mover’s Distance (EMD) variant. We show
that it is a metric, if it is used with a metric ground distance. Second, we present
a linear time algorithm for the computation of the EMD variant, with a robust
ground distance for oriented gradients. Finally, we present experimental results
for SIFT matching on the Mikolajczyk and Schmid dataset [2] showing that our
method outperforms state of the art distances such as L2, EMD-L1 [20], diffusion
distance [21] and EMDMOD [22, 23].

This paper is organized as follows. Section 2 is an overview of previous work.
Section 3 introduces the new EMD variant. Section 4 introduces the new SIFT
metric and the linear time algorithm for its computation. Section 5 describes the
experimental setup and Section 6 presents the results. Finally, conclusions are
drawn in Section 7.

2 Previous Work

Early work using cross-bin distances for histogram comparison can be found in
[24, 25, 22, 26]. Shen and Wong [24] proposed to unfold two integer histograms,
sort them and then compute the L1 distance between the unfolded histograms.
To compute the modulo matching distance between cyclic histograms they pro-
posed taking the minimum from all cyclic permutations. This distance is equiv-
alent to EMD between two normalized histograms. Werman et al. [25] showed
that this distance is equal to the L1 distance between the cumulative histograms.
They also proved that matching two cyclic histograms by examining only cyclic
permutations is in effect optimal. Cha and Srihari [27] rediscovered these algo-
rithms and described a character writer identification application. Werman et al.
[22] proposed an O(M log M) algorithm for finding a minimal matching between
two sets of M points on a circle. The algorithm can be adapted to compute the
EMD between two N -bin, normalized histograms with time complexity O(N)
(Appendix A in [23]).

Peleg et al. [26] suggested using the EMD for grayscale images and using
linear programming to compute it. Rubner et al. [1] suggested using EMD for
color and texture images. They computed the EMD using a specific linear pro-
gramming algorithm - the transportation simplex. The algorithm worst case
time complexity is exponential. Practical run time was shown to be super-cubic
(Ω(N3) ∩ O(N4)). Interior-point algorithms with time complexity O(N3logN)
can also be used. All of these algorithms have high computational cost.

Indyk and Thaper [28] proposed approximating the EMD by embedding it
into an Euclidean space. Embedding time complexity is O(Nd log ∆), where N

is the feature set size, d is the feature space dimension and ∆ is the diameter of
the union of the two feature sets.

Recently Ling and Okada proposed general cross-bin distances for histogram
descriptors. The first is EMD-L1[20]; i.e. EMD with L1 as the ground distance.
To execute the EMD-L1 computation, they propose a tree-based algorithm, Tree-
EMD. Tree-EMD exploits the fact that a basic feasible solution of the simplex
algorithm-based solver forms a spanning tree when the EMD-L1 is modeled as
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a network flow optimization problem. The worst case time complexity is expo-
nential. Empirically, they show that this new algorithm has an average time
complexity O(N2). Ling and Okada also proposed the diffusion distance [21].
They defined the difference between two histograms to be a temperature field.
The diffusion distance was derived as the sum of dissimilarities over scales. The
algorithm run time is linear.

For a comprehensive review of EMD and its applications in computer vision
we refer the reader to Ling and Okada’s paper [20].

3 The new EMD variant - ÊMD

This section introduces ÊMD, a new Earth Mover’s Distance variant. We show
that it is a metric (unlike the original EMD [1] which is a metric only for nor-
malized histograms). Moreover, it is a natural extension of the L1 metric.

The Earth Mover’s Distance (EMD) [1] is defined as the minimal cost that
must be paid to transform one histogram into the other, where there is a “ground
distance” between the basic features that are aggregated into the histogram.

Given two histograms P, Q the EMD as defined by Rubner et al. [1] is:

EMD(P, Q) = min
{fij}

∑

i,j fijdij
∑

i,j fij

s.t (1)

∑

j

fij ≤ Pi ,
∑

i

fij ≤ Qj ,
∑

i,j

fij = min(
∑

i

Pi,
∑

j

Qj) , fij ≥ 0 (2)

where {fij} denotes the flows. Each fij represents the amount transported from
the ith supply to the jth demand. We call dij the ground distance between bin
i and bin j in the histograms.

We propose ÊMD:

ÊMDα(P, Q) = (min
{fij}

∑

i,j

fijdij)+|
∑

i

Pi−
∑

j

Qj |×α max
i,j

{dij} s.t Eq. 2 (3)

Note that for two probability histograms (i.e. total mass equal to one) EMD

and ÊMD are equivalent. However, if the masses are not equal, ÊMD adds one
supplier or demander such that the masses on both sides becomes equal. The
ground distance between this supplier or demander to all other demanders or
suppliers respectively is set to be α times the maximum ground distance. In

addition, the ÊMD is not normalized by the total flow.

Note that ÊMD with α = 0.5 and with the Kroncker δ ground distance
multiplied by two (dij = 0 if i = j, 2 otherwise) is equal to the L1 metric.

If α ≥ 0.5 and the ground distance is a metric, ÊMD is a metric (unlike the
original EMD [1] which is a metric only for normalized histograms). A proof
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is given in Appendix B [23]. Being a metric can lead to more efficient data
structures and search algorithms.

We now give two examples of when the usage of ÊMD is more appropriate
(both of which are the case for the SIFT descriptors). The first is when the total
mass of the histograms is important. For example, let P = (1, 0), Q = (0, 1),
P ′ = (9, 0), Q′ = (0, 9). Using L1 as a ground distance and α = 1, EMD(P, Q) =

1 = EMD(P ′, Q′), while ÊMD(P, Q) = 1 < 9 = ÊMD(P ′, Q′). The second is
when the difference in total mass between histograms is a distinctive cue. For
example, let P = (1, 0), Q = (1, 7). Using L1 as a ground distance and α = 1,

EMD(P, Q) = 0, while ÊMD(P, Q) = 7.

4 The SIFT
DIST

Metric

This section introduces SIFTDIST, a new metric between SIFT descriptors. It
is common practice to use the L2 metric for comparing SIFT descriptors. This
practice assumes that the SIFT histograms are aligned, so that a bin in one
histogram is only compared to the corresponding bin in the other histogram. This
is often not the case, due to quantization, distortion, occlusion, etc. Our distance
has three instead of two matching costs: zero-cost for exact corresponding bins,
one-cost for neighboring bins and two-cost for farther bins and for the extra
mass. Thus the metric is robust to small errors and outliers.

The section first defines SIFTDIST and then presents a linear time algorithm
for its computation.

4.1 SIFTDIST Definition

This section first describes the SIFT descriptor. Second, it proposes Thresholded
Modulo Earth Mover’s Distance (EMDTMOD), an EMD variant for oriented gra-
dient histograms. Finally it defines the SIFTDIST.

The SIFT descriptor [3] is a M × M × N histogram. Each of the M × M

spatial cells contains an N -bin histogram of oriented gradients. See Fig. 1 for a
visualization of SIFT descriptors.

(a) (b)

Fig. 1. (a) 4× 4× 8 SIFT
descriptor. (b) 4 × 4 × 16
SIFT descriptor.
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Let A = {0, . . . , N −1} be N points, equally spaced, on a circle. The modulo
L1 distance for two points i, j ∈ A is:

DMOD(i, j) = min(|i − j|, N − |i − j|) (4)

The thresholded modulo L1 distance is defined as:

DTDMO(i, j) = min (DMOD(i, j), 2) (5)

EMDTMOD is defined as ÊMD (Eq. 3) with ground distance DTDMO(i, j) and
α = 1. DTDMO is a metric. It follows from Appendix B [23] that EMDTMOD is
also a metric. Using EMDTMOD the transportation cost to the two nearby bins is
1, while for farther bins and for the extra mass it is 2 (see Fig. 2). For example,
for N = 16 we assume that all differences larger than 22.5◦ are caused by outliers
and should be assigned the same transportation cost.

Fig. 2. The flow network of EMDTMOD for N = 8.
The brown vertexes on the inner circle are the bins of
the “supply” histogram, P . The cyan vertexes on the
outer circle are the bins of the “demand” histogram,
Q. We assume without loss of generality that

P

i
Pi ≥

P

j
Qj ; thus we add one infinite sink in the middle.

The short gray edges are zero-cost edges. The long
black edges are one-cost edges. Two-cost edges that
turn the graph into a full bi-partite graph between
sinks and sources are not colored for visibility.

The SIFTDIST between two SIFT descriptors is defined as the sum over the
EMDTMOD between all the M×M oriented gradient histograms. SIFTDIST is also
an EMD, where edges between spatial bins have an infinite cost.

ÊMD (Eq. 3) has two advantages over Rubner’s EMD (Eq. 1) for comparing
SIFT descriptors. First, the difference in total gradient magnitude between SIFT
spatial cells is an important distinctive cue. Using Rubner’s definition this cue

is ignored. Second, ÊMD is a metric even for non-normalized histograms.

4.2 A Linear Time SIFTDIST Algorithm

As SIFTDIST is a sum of EMDTMOD solutions, we present a linear time algorithm
for EMDTMOD.

Like all other Earth Mover’s Distances, EMDTMOD can be solved by a max-
flow-min-cost algorithm. Each bin i in the first histogram is connected to: bin
i in the second histogram with a zero-cost edge, two nearby bins with one-cost

edges and to all other bins with two-cost edges. See Fig. 2 for an illustration of
this flow network.
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The algorithm starts by saturating all zero-cost edges. As the ground distance
(Eq. 5) obeys the triangle inequality, this step does not change the minimum cost
solution [22]. Note that after the first step finishes from each of the supplier-
demander pairs that were connected with a zero-cost edge, either the supplier is
empty or the demander is full.

To minimize the cost after the first step, the algorithm needs to maximize the
flow through the one-cost edges; i.e. the problem becomes a max-flow problem
on a graph with N vertexes and at most N edges, where the maximum path
length is 1 as flow goes only from supply to demand (see Fig. 2). This step starts
by checking whether all vertexes are degree 2, if yes we remove an arbitrary edge.
Second, we traverse the suppliers’ vertexes clockwise, twice. For each degree one
vertex we saturate its edge. If we did not remove an edge at the beginning of this
step, there will be no augmenting paths. If an edge was removed, the algorithm
flows through all augmenting paths. All these paths can be found by returning
the edge and expanding from it.

The algorithm finishes by flowing through all two-cost edges, which is equiv-
alent to multiplying the maximum of the total remaining supply and demand
by two and adding it to the distance.

5 Experimental Setup

We evaluate SIFTDIST using a test protocol similar to that of Mikolajczyk and
Schmid [2]. The dataset was downloaded from [29]. The test data contain eight
folders, each with six images with different geometric and photometric transfor-
mations and for different scene types. Fig. 3 shows the first and the third image
from each folder. Six image transformations are evaluated: viewpoint change,
scale and rotation, image blur, light change and JPEG compression. The images
are either of planar scenes or the camera position was fixed during acquisition.
The images are, therefore, always related by a homography. The ground truth
homographies are supplied with the dataset. For further details about the dataset
we refer the reader to [2].

The evaluation criterion is based on the number of correct and false matches
obtained for an image pair. The match definition depends on the matching strat-
egy. The matching strategy we use is a symmetric version of Lowe’s ratio match-
ing [3]. Let a ∈ A and b ∈ B be two descriptors and n(a, A) and n(b, B) be their
spatial neighbors; that is, all descriptors in A and B respectively such that the
ratio of the intersection and union of their regions with a and b respectively is
larger than 0.5. a and b are matched, if all the following conditions hold: a =
arg mina′∈A D(a′, b), a2 = arg mina′∈A\n(a,A) D(a′, b), b = arg minb′∈B D(a, b′),

b2 = argminb′∈B\n(b,B) D(a, b′) and min
(

D(a2,b)
D(a,b) ,

D(a,b2)
D(a,b)

)

≥ R. R value is varied

to obtain the curves. Note that for R = 1 the matching strategy is the symmetric
nearest neighbor strategy. The technique of not using overly close regions as a
second best match was used by Forssén and Lowe [30].

The match correctness is determined by the overlap error [2]. It measures how
well regions A and B correspond under a known homography H , and is defined
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Graf Wall Boat Bark

Bikes Trees Leuven Ubc

Fig. 3. Examples of test images (left): Graf (viewpoint change, structured scene),
Wall (viewpoint change, textured scene), Boat (scale change + image rotation, struc-
tured scene), Bark (scale change + image rotation, textured scene), Bikes (image
blur, structured scene), Trees (image blur, textured scene), Leuven (light change,
structured scene), and Ubc (JPEG compression, structured scene).

by the ratio of the intersection and union of the regions: ǫS = 1 − A
T

HT BH

A
S

HT BH
.

As in [2] a match is assumed to be correct if ǫS < 0.5. The correspondence
number (possible correct matches) is the maximum matching size in the correct
match, bi-partite graph. The results are presented with recall versus 1 - precision:
recall = #correct matches

#correspondences, 1 − precision = #false matches
#all matches .

In all experiments we used Vedaldi’s SIFT detector and descriptor implemen-
tation [31]. All parameters were set to the defaults except the oriented gradient
bins number, where we also tested our method with a SIFT descriptor having
16 oriented gradient bins (see Fig. 1 (b) in page 4).

6 Results

In this section, we present and discuss the experimental results. The performance
of SIFTDIST is compared to that of L2, EMD-L1 [20], diffusion distance [21]
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and EMDMOD

1 [22, 23] for viewpoint change, scale and rotation, image blur,
light change and JPEG compression. The matching was done between SIFT
descriptors with eight and sixteen orientation bins (see Fig. 1 in page 4). Finally,
we present run time results.

Figs. 4,5,6,7 are 1-precision vs. recall graphs. Due to space constraints we
present graphs for the matching of the first to the third and fifth images from
each folder in the Mikolajczyk and Schmid dataset [29]. Results for the rest of
the data are similar and are in [32].

In all of the experiments SIFTDIST computed between SIFT descriptors with
sixteen oriented gradient bins (SIFT-16) outperforms all other methods.
SIFTDIST computed between the original SIFT descriptors with eight oriented
gradient bins (SIFT-8) is usually the second. Also, using SIFTDIST consistently
produces results with greater precision and recall for the symmetric nearest
neighbor matching (the rightmost point of each curve).

Increasing the number of orientation bins from eight to sixteen decreases
the performance of L2 and increases the performance of SIFTDIST. This can be
explained by the SIFTDIST robustness to quantization errors.

Fig. 4 shows matching results for viewpoint change on structured (Graf) and
textured (Wall) scenes . SIFTDIST has the highest ranking. As in [2] performance
is better on the textured scene. Performance decreases with viewpoint change
(compare Graf-3 to Graf-5 and Wall-3 to Wall-5), while the distance ranking
remains the same. For large viewpoint change, performance is poor (see Graf-5)
and the resulting graphs are not smooth. This can be explained by the fact that
the SIFT detector and descriptor are not affine invariant.

Fig. 5 shows matching results for similarity transformation on structured
(Boat) and textured (Bark) scenes. SIFTDIST outperforms all other distances.
As in [2] performance is better on the textured scene.

Fig. 6 shows matching results for image blur on structured (Bikes) and
textured (Trees) scenes. SIFTDIST has the highest ranking. The SIFT descriptor
is affected by image blur. A similar observation was made by Mikolajczyk and
Schmid [2].

Fig. 7 - Leuven shows matching results for light change. SIFTDIST obtains
the best matching score. The performance decreases with lack of light (compare
Leuven-3 to Leuven-5), although not drastically.

Fig. 7 - Ubc shows matching results for JPEG compression. SIFTDIST outper-
forms all other distances. Performance decreases with compression level (compare
Ubc-3 to Ubc-5).

Table 1 present run time results. All runs were conducted on a Dual-Core
AMD Opteron 2.6GHz processor. The table contains the run time in seconds of
each distance computation between two sets of 1000 SIFT descriptors with eight
and sixteen oriented gradient bins. Note that we measured the run time of (L2)

2

and not L2 as computing the root does not change the order of elements and is
time consuming. SIFTDIST is the fastest cross-bin distance.

1 Note that as the fast algorithm for EMDMOD assumes normalized histograms, we
normalized each histogram for its computation.
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Fig. 4. Results on the Mikolajczyk and Schmid dataset [2]. Should be viewed in color.
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Fig. 5. Results on the Mikolajczyk and Schmid dataset [2]. Should be viewed in color.
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Fig. 6. Results on the Mikolajczyk and Schmid dataset [2]. Should be viewed in color.
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Fig. 7. Results on the Mikolajczyk and Schmid dataset [2]. Should be viewed in color.
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SIFTDIST (L2)
2 EMDMOD [22, 23] Diffusion [21] EMD-L1 [20]

SIFT-8 1.5 0.35 18 28 192
SIFT-16 2.2 1.3 29 56 637

Table 1. Run time results in seconds of 106 distance computations

7 Conclusions

We presented a new cross-bin metric between histograms and a linear time algo-
rithm for its computation. Extensive experimental results for SIFT matching on
the Mikolajczyk and Schmid dataset [2] showed that our method outperforms
state of the art distances.

The speed can be further improved using techniques such as Bayesian se-
quential hypothesis testing [33], sub linear indexing [34] and approximate near-
est neighbor [35, 36]. The new cross-bin histogram metric may also be useful
for other histograms, either cyclic (e.g. hue in color images) or non-cyclic (e.g.
intensity in grayscale images). The project homepage, including code (C++ and
Matlab wrappers) is at: http://www.cs.huji.ac.il/~ofirpele/SiftDist
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Appendix A. Linear Time EMD
MOD

Algorithm

This appendix presents a linear time algorithm for the computation of the Mod-
ulo Earth Mover’s Distance between normalized cyclic histograms. The algorithm
is an adaption of Werman et al. algorithm for bipartite graph matching for points
on a circle [22].

Let A = {0, . . . , N − 1} be N points, equally spaced, on a circle. Let Q

and P be two normalized histograms of such points. The Modulo Earth Mover’s
Distance (EMDMOD) between Q and P is defined as:

EMDMOD(Q, P ) = min
F={fij}

∑

i,j

fijDMOD(i, j) s.t (6)

∑

j

fij ≤ Pi ,
∑

i

fij ≤ Qj ,
∑

i,j

fij =
∑

i

Pi =
∑

j

Qj , fij ≥ 0 (7)

where DMOD(i, j) is the modulo L1 distance:

DMOD(i, j) = min(|i − j|, N − |i − j|) (8)

The linear time EMDMOD pseudo code is given in Alg. 1. Lines 2-8 compute
the F function from [22] for masses instead of points; i.e. F [i] is the total mass
in bins smaller or equal to i in Q, minus the total mass in bins smaller or equal
to i in P . As was noted by Cabrelli and Molter [37] the cutting point of the circle
for the match can be found with a weighted median algorithm when the points
on the circles are sorted. In histograms the points are sorted and equally spaced;
thus it is enough to find the median. Lines 10-16 in Alg. 1 cut the circles into
two lines. Finally, lines 17-31 match groups of points instead of single points.
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Algorithm 1 EMDMOD(Q, P, N)

1: D ⇐ 0
2: cQ ⇐ Q[0]
3: cP ⇐ P [0]
4: F [0] ⇐ Q[0] − P [0]
5: for i = 1 to N − 1 do

6: cQ ⇐ cQ + Q[i]
7: cP ⇐ cP + P [i]
8: F [i] ⇐ cQ − cP

9: i ⇐ ((index of the median of F ) + 1) mod N

10: for t = 0 to N − 1 do

11: I [t] ⇐ i

12: i ⇐ (i + 1) mod N

13: tQ ⇐ 0
14: tP ⇐ 0
15: iQ ⇐ I [tQ]
16: iP ⇐ I [tP ]
17: while true do

18: while Q[iQ]=0 do

19: tQ ⇐ tQ + 1
20: if tQ = N then

21: return D

22: iQ ⇐ I [tQ]
23: while P[iP]=0 do

24: tP ⇐ tP + 1
25: if tP = N then

26: return D

27: iP ⇐ I [tP ]
28: f ⇐ min(Q[iQ], P [iP ])
29: Q[iQ] ⇐ Q[iQ] − f

30: P [iP ] ⇐ P [iP ] − f

31: D ⇐ f × min(|iQ − iP |, N − |iQ − iP |)
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Appendix B. ÊMD Metric Proof

In this appendix we prove that if α ≥ 0.5 and the ground distance is a metric,

ÊMD (see Eq. 3 in page 3) is a metric. Non-negativity and symmetry hold
trivially in all cases, so we only need to prove that the triangle inequality holds.

Theorem 1. Let A, B, C be three vectors in (IR+)
N

and let ÊMD be with a

metric ground distance and α ≥ 0.5, then:

ÊMDα(A, B) + ÊMDα(B, C) ≥ ÊMDα(A, C) (9)

Proof. Given an N × N distance matrix dij , let d̃ij be an (N + 1) × (N + 1)
distance matrix such that:

d̃ij =



















dij 1 ≤ i, j ≤ N

α maxi,j{dij} i = N + 1, j 6= N + 1

α maxi,j{dij} i 6= N + 1, j = N + 1

0 i = N + 1, j = N + 1

(10)

Let S = max(
∑N

i=1 Ai,
∑N

i=1 Bi,
∑N

i=1 Ci). We define three vectors in RN+1:

Ã = [A, S −
N

∑

i=1

Ai] (11)

B̃ = [B, S −

N
∑

i=1

Bi] (12)

C̃ = [C, S −

N
∑

i=1

Ci] (13)

The sum of each of the three vectors equals S. In addition:

ÊMDα(A, B) = EMD(Ã, B̃) × S (14)

ÊMDα(B, C) = EMD(B̃, C̃) × S (15)

ÊMDα(A, C) = EMD(Ã, C̃) × S (16)

where ÊMD is with the ground distance dij and EMD is with the ground

distance d̃ij . Rubner et al. [1] proved that the triangle inequality holds for EMD

when the ground distance is a metric and the histograms are normalized. Ã, B̃, C̃

are normalized histograms. If the ground distance dij is a metric and α ≥ 0.5,

the ground distance d̃ij is a metric (an enumeration of all cases proves this).
Thus we get:
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EMD(Ã, B̃)+EMD(B̃, C̃) ≥ EMD(Ã, C̃) (17)

⇓ (S ≥ 0) (18)

(EMD(Ã, B̃) × S)+(EMD(B̃, C̃) × S) ≥ (EMD(Ã, C̃) × S) (19)

⇓ (Eqs. 14, 15, 16) (20)

ÊMDα(A, B)+ÊMDα(B, C) ≥ ÊMDα(A, C) (21)


