
Video Quality Representation Classification of
Safari Encrypted DASH Streams

Ran Dubin, Ofer Hadar, Itai Richman, Ofir Trabelsi
Communication Systems Engineering
Ben-Gurion University of the Negev

Israel

Amit Dvir1, Ofir Pele1,2
1Center for Cyber Technologies

1Department of Computer Science
2Department of Electrical and Electronics Engineering

1Ariel University
1Israel

Abstract—The increasing popularity of HTTP adaptive video
streaming services has dramatically increased bandwidth require-
ments on operator networks, which attempt to shape their traffic
through Deep Packet Inspection (DPI). However, Google and cer-
tain content providers have started to encrypt their video services.
As a result, operators often encounter difficulties in shaping their
encrypted video traffic via DPI. This highlights the need for new
traffic classification methods for encrypted HTTP adaptive video
streaming to enable smart traffic shaping. These new methods
will have to effectively estimate the quality representation layer
and playout buffer. We present a new method and show for
the first time that video quality representation classification for
(YouTube) encrypted HTTP adaptive streaming is possible. We
analyze the performance of this classification method with Safari
over HTTPS. Based on a large number of offline and online
traffic classification experiments, we demonstrate that it can
independently classify, in real time, every video segment into
one of the quality representation layers with 96.13% average
accuracy.

Index Terms—HTTPS Video Streaming, Encrypted Traffic,
Quality Representation Classification, Safari

I. INTRODUCTION

Every day, hundreds of millions of Internet users view
videos online [1]. Google encourages all website owners to
switch from HTTP to HTTPS by taking into account whether
sites use secure, encrypted connections as a signal in their
ranking algorithms [2]. Additionally, YouTube network traffic
is encrypted. The YouTube video streaming solution is based
on Adaptive Streaming Over HTTP (DASH) [3]. DASH is a
Multi Bit Rate (MBR) streaming method, designed to improve
viewers’ Quality of Experience (QoE) [4]–[17].

Network traffic classification algorithms use two main tech-
niques: DPI packet content analysis and statistical feature clas-
sification [18]–[25]. However, their effectiveness for encrypted
traffic is concentrated mainly in recognizing TLS/SSL hand-
shake parameters that help recognize the application content
types (video, chat, etc. ) or the application name. They do
not try to classify the video stream quality representation or
provide any enrichment data on the video streams.

YouTube analysis was conducted in many aspects such as
YouTube servers’ location [4]–[6], [26]–[32]. Many recent
works have suggested methods for encrypted traffic classifi-
cation and several surveys have presented detailed description
of the state of the art methods [18]–[20]. Several works have

examined different statistical features [33]–[43]. Some of these
features are not relevant for video streams classification. For
instance, the packet size is often MTU size in video streaming,
as it consumes high bandwidth and re-transmission occurs
often. TCP parameters such as server sent bit rate, inter-arrival
packet time, RTT and packet direction are weak features. To
the best of our knowledge, this work is the first that classify
quality representation of encrypted YouTube streams.

In this paper we present a novel video stream quality
representation classification for DASH. We classify the video
quality representation, and each feature (group of packets) is
classified by itself without any dependencies on past or future
samples. Our scheme was tested on various browsers with
Adobe’s Flash as the player over HTTPS network traffic on
offline and online YouTube video traffic streams. Our method
recognizes, the YouTube video traffic quality representation
layer with 96.13% average accuracy.

II. VIDEO QUALITY REPRESENTATION CLASSIFICATION

A DASH server stores a video which is segmented into
fixed duration segments. Each segment is encoded into m
representations (m can be different for different videos). The
user selects whether to download a constant or adaptive repre-
sentation. In the adaptive mode, the client’s video player appli-
cation (via adaptation logic), based on his network condition
estimate and playout buffer selects a suitable representation to
download each chunk which is a part of a segment.

A. Preprocessing

First, we divide the traffic into flows based on a five-
tuple representation: {protocol (TCP/UDP), src IP, dst IP,
src port, dst port}. Then, we decide for each flow whether
it is a YouTube flow. This is done based on the Service
Name Indication (SNI) field in the Client Hello message.
If the “googlevideos.com” string is found in the SNI, the
flow is passed to the next module. Note that, the YouTube
flows identification can also be done using machine learning
techniques [44], [45].

Second, we remove audio packets. The audio data and the
video data can be found in the same 5-tuple flow and in some
cases we cannot distinguish between them. This can result in



0 100 200 300

0

1

2

3

4
·106

Time(sec)

B
y
te
s

s
e
c

(a) Firefox

0 100 200 300

0

1

2

3

4
·106

Time(sec)

B
y
te
s

s
e
c

(b) Safari

0 100 200 300

0

1

2

3

4
·106

Time(sec)

B
y
te
s

s
e
c

(c) Explorer

0 100 200 300

0

1

2

3

4
·106

Time(sec)

B
y
te
s

s
e
c

(d) Chrome

Fig. 1. Traffic flows of auto mode downloads of the same movie from different browsers using flash player. On the time of this research, all major browsers
used flash players. All flows have the same characteristics: peaks (of packets) with silences before and after. Note that the differences between the flows may
be caused by: auto mode, network conditions, video container, video encoder, etc.

a classification error since the boundaries between the quality
representations are very close.

Third, we remove the first and last peak in each flow. The
first peak is large as the player fills the buffer and thus the
quality is not related to the peak volume [5]. As our method
is the first step for traffic shaping and the last peak is not
relevant for traffic shaping, we remove it.

Finally, we remove TCP re-transmissions using a TCP
stack [21] as re-transmissions are caused mostly by network
conditions.

B. Feature Extraction

The feature extraction is done on the preprocessed traffic,
where non-YouTube flows, most of the audio packets, the first
and last peaks and TCP re-transmissions have been removed.

To better understand encrypted YouTube streaming traf-
fic properties, we examined YouTube traffic under different
browsers. Fig. 1 depicts traffic download patterns of auto
quality representation using different browsers. In the figure
we can see that all flows contains peaks. We decided to encode
every peak of the streams to a feature. The feature is bit
per peak. Note that, several works such as [46] done the
same analysis focusing either in fixed quality or fixed network
bandwidth where others such as [47], [48] showed the same
characteristics (On/Off which is equivalent to peak).

C. Learning

The proposed classification solution is illustrated in Fig. 2. It
has a training step and a testing step. In the training step, first,
we constructed our dataset based on YouTube video streaming
captures (PCAP trace files [49]). Each video was downloaded
with the three following fixed qualities {360P, 480P, 720P}.
Data was preprocessed and the bit per peak features were
extracted. Afterwards, training data was clustered using k-
means++ [50] (step (3) in Fig. 2). The end product of these
steps is a code-book that represent the entire training dataset.

For each quality, for each time index we computed the
average bit per peak. We now have an average bit per peak
vector (its length is the maximum time index) for each quality.
From these vectors and using the codebook from the k-means
stage we computed a representative string for each quality.
In the classification stage we carried out the bit per peak
extraction for each segment and then assigned a symbol (the
one with the shortest distance to the average) to it from the
codebook. Finally, we assigned a label by finding which center
was the closest.

III. PERFORMANCE EVALUATION

A. Dataset

The video titles used in this study are popular YouTube
videos from different categories such as news, video action



Bit per peak

average bit per peak

Bit per peak

Fig. 2. Proposed algorithm diagram flow

Predicted

A
c
tu
a
l

(a) Proposed solution, 40 training video
titles (different streams), fixed qualities
representation.

Predicted

A
c
t
u
a
l

(b) Nearest Neighbor using Average
Bit Rate Feature(naı̈ve), test-fixed-train-
titles: 40 training video titles (different
streams), fixed qualities representation.

Predicted

A
c
t
u
a
l

(c) Proposed solution, test-adaptive-
train-titles: 5 training video titles (differ-
ent streams), auto quality representation.

Predicted

A
c
t
u
a
l

(d) Proposed solution, test-adaptive-test-
titles: 5 new videos titles (not seen in
training), auto quality representation.

Fig. 3. Confusion matrices.



trailers and GoPro videos [49]. In this study we decided to
focus on the Safari browser since the fixed quality download
mode and the adaptive quality selection mode have similar
characteristics. We show that for Safari, we can learn an
accurate model for static or automatic quality modes simply
by using a fixed training dataset. Future studies will add
additional browsers. The training dataset contained 120 video
streams of 40 unique video titles each of which was separately
downloaded with fixed quality from the following qualities:
{360P, 480P, 720P}.

We have three testing datasets: 1) test-fixed-train-titles:
120 video streams of 40 unique video titles (same titles
as in the training phase) each of which was separately
downloaded with a fixed quality from the following quali-
ties: {360P, 480P, 720P}; 2) test-adaptive-train-titles: 5 video
streams of 5 unique video titles (titles taken from the training
phase titles) each of which was downloaded with an adaptive
quality representation (auto mode); 3) test-adaptive-test-titles:
5 video streams of 5 unique video titles (new titles that were
not in the training phase) each of which was downloaded with
an adaptive quality representation (auto mode). All the test
video streams were different from the ones that were used in
the training phase (because of network conditions).

B. Accuracy Evaluation on the Different Test Sets

Fig. 3(a) shows that our classification errors in the fixed
quality representation mode, are between close quality repre-
sentations and were lower than 3%. The average classification
accuracy was 2% better when we tested video titles from our
training set (Fig. 3(c)) than when we tested video titles that
were not in our training set (Fig. 3(d)).

We examined why the error of classifying 480P quality
representation segments as 720P in adaptive streams was
relatively higher than the other errors (see Figs. 3(c) and 3(d)).
We found that when the quality representation switches from
360P to 480P there are high bit rate bursts. These bursts
cause the erroneous classification of these segments as 720P .
In this work, we only trained the classifier based on the fixed
quality switch mode. In future work, we will consider quality
representation switches in our training.

C. Classifier Comparisons

Our proposed solution is the first classifier for encrypted
adaptive video streaming over HTTPS. In this section, we
describe and compare to two other new classification ap-
proaches: a naı̈ve classifier and an algorithm based on a net-
work traffic malware fingerprinting algorithm [51]. Since the
malware fingerprinting is not designed for auto representation
switching we used the fixed mode dataset in the tests. The
naı̈ve algorithm uses the average bit per peak for each quality.
We used our entire fixed representation testing dataset and
found the closest average quality bit rate for each feature. Fig.
3(b) illustrates the naı̈ve approach and the proposed algorithm
is presented in Figs. 3(a), 3(c), 3(d). Table I summarize
this comparison. It shows that our proposed solution (with
our bit per peak feature) achieved the highest identification

Feature classifier average confusion
Bit Per Peak naı̈ve 88.23%
Time differences Shimoni et al. [51] 38.26%
Bit Per Peak Shimoni et al. [51] 81.46%
Time differences Proposed solution 62.21%
Bit Per Peak Proposed solution 97.18%

TABLE I
COMPARISON OF THE DIFFERENT CLASSIFIERS AND FEATURE CREATION
METHODS ON THE test-fixed-train-titles DATASET. NOTE THAT THE NAÏVE

ALGORITHM IS BASED ON BIT PER PEAK FEATURES AND CANNOT BE USED
WITH TIME DIFFERENCES.

results whereas all the other algorithms, especially using time
differences obtained much lower identification results.

IV. CONCLUSIONS

We propose a novel algorithm for YouTube HTTP adap-
tive video streaming quality representation classification. Our
solution was tested on the Safari (Flash player) browser with
offline and online network traffic over HTTPS. We achieved an
average classification accuracy of 97.18% in the fixed mode,
98.14% in the adaptive mode where video titles (not streams)
were from the training data, and 96.13% in the adaptive mode
where video titles were not from the training data.

REFERENCES

[1] Cisco. The zettabyte era: Trends and analysis, 2015.
[2] Google. Google webmaster central blog: Https as a ranking signal, 2014.
[3] ISO/IEC. Information technology - Dynamic adaptive streaming over

HTTP (DASH), May 2014.
[4] F. Wamser, M. Seufert, P. Casas, R. Irmer, P. Tran-Gia, and R. Schatz.

Yomoapp: a tool for analyzing qoe of youtube http adaptive streaming
in mobile networks. In EuCNC, 2015.

[5] Georgios Dimopoulos et al. Youtube traffic monitoring and analysis.
2012.

[6] Tobias Hoßfeld, Raimund Schatz, Ernst Biersack, and Louis Plissonneau.
Internet video delivery in youtube: from traffic measurements to quality
of experience. In DTMA. 2013.

[7] S. Lederer, C. Muller, and C. Timmerer. Towards peer-assisted dynamic
adaptive streaming over http. In PV, 2012.

[8] István Ketykó, Katrien De Moor, Toon De Pessemier, Adrián Juan
Verdejo, Kris Vanhecke, Wout Joseph, Luc Martens, and Lieven
De Marez. Qoe measurement of mobile youtube video streaming. In
MoViD, 2010.

[9] O. Oyman and S. Singh. Quality of experience for http adaptive
streaming services. CM, 2012.

[10] Weiwei Li, Hamood-Ur Rehman, Mark H. Chignell, Alberto Leon-
Garcia, Leon Zucherman, and Jie Jiang. Impact of retainability failures
on video quality of experience. In SITIS, 2014.

[11] Weiwei Li, Hamood-Ur Rehman, Diba Kaya, Mark H. Chignell, Al-
berto Leon-Garcia, Leon Zucherman, and Jie Jiang. Video quality of
experience in the presence of accessibility and retainability failures. In
ICHNQRSR, 2014.

[12] P. Spachos, W. Li, M. Chignell, A. Leon-Garcia, J. Jiang, and L. Zucher-
man. Acceptability and quality of experience in over the top video. In
ICCW, 2015.

[13] C. Müller, S. Lederer, and C. Timmerer. An evaluation of dynamic
adaptive streaming over http in vehicular environments. In MV, 2012.

[14] C. Sieber. Implementation and user-centric comparison of a novel
adaptation logic for dash with svc. In IM, 2013.

[15] C. Mr and C. Timmerer. A vlc media player plugin enabling dynamic
adaptive streaming over http. In ACM Multimedia, 2011.

[16] C. Sieber, T. Hoßfeld, T. Zinner, P. Tran-Gia, and C. Timmerer. Imple-
mentation and User-centric Comparison of a Novel Adaptation Logic
for DASH with SVC. In IM, 2013.

[17] I. Ben Mustafa and T. Nadeem. Dynamic traffic shaping technique
for http adaptive video streaming using software defined networks. In
SECON, 2015.



[18] A. Dainotti, A. Pescape, and KC. Claffy. Issues and future directions in
traffic classification. Network, IEEE, 2012.

[19] S. Valenti, D. Rossi, A. Dainotti, A. Pescapè, A. Finamore, and M. Mel-
lia. Reviewing traffic classification. In DTMA, 2013.

[20] Z. Cao, G. Xiong, Y. Zhao, Z. Li, and L. Guo. A survey on encrypted
traffic classification. In ATIS, 2014.

[21] R. Dubin, O. Hadar, A. Noam, and R. Ohayon. Progressive download
video rate traffic shaping using tcp window and deep packet inspection.
In WORLDCOMP, 2012.

[22] B. Niemczyk and P.Rao. Identification over encrypted channels. In
BlackHat USA, 2014.

[23] P. Fu, L. Guo, G. Xiong, and J. Meng. Classification research on ssl
encrypted application. In TCS. 2013.

[24] P. Fu, G. Xiong, Y. Zhao, M. Song, and P. Zhang. An identification
method based on ssl extension. In SRAID, 2013.

[25] M. Korczynski and A. Duda. Classifying service flows in the encrypted
skype traffic. In ICC, 2012.

[26] Vijay Kumar Adhikari, Sourabh Jain, and Zhi-Li Zhang. Youtube traffic
dynamics and its interplay with a tier-1 isp: An isp perspective. In
SIGCOMM, 2010.

[27] Ruben Torres, Alessandro Finamore, Jin Ryong Kim, Marco Mellia,
Maurizio M. Munafo, and Sanjay Rao. Dissecting video server selection
strategies in the youtube cdn. ICDCS, 2011.

[28] Alessandro Finamore, Marco Mellia, Maurizio M. Munafò, Ruben
Torres, and Sanjay G. Rao. Youtube everywhere: Impact of device and
infrastructure synergies on user experience. IMC, 2011.

[29] Michael Zink, Kyoungwon Suh, Yu Gu, and Jim Kurose. Characteristics
of youtube network traffic at a campus network - measurements, models,
and implications. CN, 2009.

[30] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong yeol Ahn, and
Sue Moon. I tube, you tube, everybody tubes: Analyzing the worlds
largest user generated content video system. In IMC, 2007.

[31] Xianhui Che, B. Ip, and Ling Lin. A survey of current youtube video
characteristics. MultiMedia, IEEE, 2015.

[32] Shane Alcock and Richard Nelson. Application flow control in youtube
video streams. CCR, 2011.

[33] Vern Paxson. Empirically derived analytic models of wide-area tcp
connections. TON, 1994.

[34] R. Alshammari and AN. Zincir-Heywood. Unveiling skype encrypted
tunnels using gp. In CES, 2010.

[35] S. Zander, T. Nguyen, and G. Armitage. Self-learning ip traffic
classification based on statistical flow characteristics. In PANM, 2005.

[36] D. Zhang, C. Zheng, H. Zhang, and H. Yu. Identification and analysis
of skype peer-to-peer traffic. In ICIW, 2010.

[37] I. Paredes-Oliva, I. Castell-Uroz, P. Barlet-Ros, X. Dimitropoulos, and
J. Sole-Pareta. Practical anomaly detection based on classifying frequent
traffic patterns. In INFOCOM WKSHPS, 2012.

[38] D. Bonfiglio, M. Mellia, M. Meo, and D. Rossi. Detailed analysis of
skype traffic. Multimedia, IEEE Transactions on, 2009.

[39] KT. Chen, CY. Huang, P. Huang, and CL. Lei. Quantifying skype user
satisfaction. In CCR, 2006.

[40] E. Hjelmvik and W. John. Statistical protocol identification with spid:
Preliminary results. In SNCNW, 2009.

[41] R. Bar-Yanai, M. Langberg, D. Peleg, and L. Roditty. Realtime
classification for encrypted traffic. In EA, 2010.

[42] AM. White, AR. Matthews, KZ. Snow, and F. Monrose. Phonotactic
reconstruction of encrypted voip conversations: Hookt on fon-iks. In
SP, 2011.

[43] CV. Wright, L. Ballard, F. Monrose, and GM. Masson. Language
identification of encrypted voip traffic: Alejandra y roberto or alice and
bob? In USENIX Security, 2007.

[44] Peipei Fu, Li Guo, Gang Xiong, and Jiao Meng. Classification research
on ssl encrypted application. In TCS. 2013.

[45] Guang-Lu Sun, Yibo Xue, Yingfei Dong, Dongsheng Wang, and Chen-
glong Li. An novel hybrid method for effectively classifying encrypted
traffic. In GLOBECOM, 2010.

[46] Javier Aorga, Saioa Arrizabalaga, Beatriz Sedano, Maykel Alonso-Arce,
and Jaizki Mendizabal. Youtubes dash implementation analysis. CSCC,
2015.

[47] Pablo Ameigeiras, Juan J. Ramos-Muoz, Jorge Navarro-Ortiz, and
Juan M. Lpez-Soler. Analysis and modelling of youtube traffic. TETT,
2012.

[48] Ashwin Rao, Arnaud Legout, Yeon-sup Lim, Don Towsley, Chadi
Barakat, and Walid Dabbous. Network characteristics of video streaming
traffic. CoNEXT, 2011.

[49] Dataset of the Paper. https://drive.google.com/foldervie
w?id=0B_NMAPuEyaa6flNRcUY2QnVVWU1FczdZWEJRbDMzT0
9zSkd6T3FReHhRVndmNmVyaDcyQjA&usp=sharing.

[50] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful
seeding. In ACM-SIAM, 2007.

[51] A. Shimoni and S. Barhom. Malicious traffic detection using traffic
fingerprint. https://github.com/arnons1/trafficfingerprint, 2014.


