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Abstract—Previous research has shown that information can
be extracted from encrypted multimedia streams. This includes
video titles classification of non-HTTP adaptive streams (non-
HAS). This paper presents an algorithm for encrypted HTTP
adaptive video streaming title classification. We evaluated our
algorithm on a new YouTube popular videos dataset that was
collected from the Internet under real-world network conditions.
Our algorithm’s classification accuracy is 98%. We provide the
dataset and the crawler for future research.

Index Terms—HTTP Adaptive Video Streaming, HTTP2, En-
crypted Traffic Classification, YouTube, Network Traffic Security

I. INTRODUCTION

Every day, hundreds of millions of Internet users view
videos online, in particular on mobile phones whose numbers
are clearly going to increase [1]. By 2019, the share of video
traffic is expected to increase to 80% of the total IP traffic,
up from 67% in 2014. By 2019 the IP network will have to
accommodate a video traffic of around 135 exabytes per month
[1]. Currently, most of the video streaming web sites are using
HTTP Adaptive Streaming (HAS).

Dynamic Adaptive Streaming over HTTP (DASH) [2] is
the de facto standard method for HAS. DASH is a Multi Bit
Rate (MBR) streaming method that was designed to improve
viewers’ Quality of Experience (QoE) [3]. In DASH, each
video is divided into short segments, typically a few seconds
long (2 − 16 seconds), and each segment is encoded several
times, each time with a different quality representation. The
user (player) Adaptation Logic (AL) algorithm is responsi-
ble for the automatic selection of the most suitable quality
representation for each segment, based on parameters such as
client’s playout buffer and network conditions. As a result, the
quality representation in DASH can change between segments.

In DASH, each quality representation is encoded in variable
bit rates (VBRs). VBR does not attempt to control the output

bit rate of the encoder, so that the distortion will not vary
significantly [4]. Since the adaptation logic selects the most
suitable quality representation, where each has variable bit
rate, information retrieval from video streams is challenging.
YouTube, which often uses DASH over HTTP2 and HTTP
byte-range mode [5], now occupies a market share of over
17% of the total mobile network bandwidth in North America
[1], [6]. In this mode (HTTP byte-range mode), the byte range
of each segment request can be different. Further information
about byte-range will be discussed in Section II. Moreover,
YouTube has started to encrypt their video services [7]. As a
result, traditional Deep Packet Inspection (DPI) methods for
information retrieval in general and video title classification
in particular are not viable.

Recent works have shown that encryption is not sufficient
to protect confidentiality [8]–[18]. Wright et al. [16] suggested
a method that exploits the VBR codecs characteristics of
encrypted Voice Over Internet Protocol (VOIP) streams for
language identification.

Other works showed that video titles classification of en-
crypted video streams is possible [12]–[14]. These works use
traffic patterns features such as packet size and the application
layer information. Saponas et al. [12] uncovered security issues
with consumer electronic gadgets that enables information
retrieval such as video titles classification. Liu et al. [13]
presented a method for video title classification of RTP/UDP
Internet traffic. In [14] Liu et al. presented an improved
algorithm that is more efficient and demonstrated excellent
results on a bigger data set with real network conditions. They
use the wavelet transform for constructing unique and robust
video signatures with different compactness.

Since these works [12]–[14] have been conducted, there
have been several changes in video traffic over the Internet:
• MBR adaptive streaming (the selected quality represen-



tation of the examined video title can change).
• HTTP byte-range selection over HTTP.
• HTTP version 2 [5].
In this paper, we present a new video title classification

algorithm of YouTube video streams over DASH. The paper
goal is to emphasize that the encryption is not enough for pro-
tecting YouTube DASH users. Attackers can use this method
to understand the user viewing preferences for advertisement
or use it as an Open Source Intelligence (OSINT) [19] vector
for various purposes, while ISPs can use this method for load
balancing and CDN optimization. Our algorithm classifies the
video title once the viewer has finished seeing the movie.
Inspired by previous works, we exploit the Variable Bit-Rate
(VBR) encoding and represent each video stream as a set of
peaks’ bit rates. As for learning algorithms, we used SVM
with the RBF kernel and a Nearest Neighbor (NN) with the
set intersection as a similarity measure. We evaluated our
algorithm on a new YouTube popular videos dataset that
was collected from the Internet under real-world network
conditions. We provide the dataset [20] and the crawler [21]
for future research. Our algorithm’s classification accuracy is
98%.

II. YOUTUBE ANALYSIS

To have a better understanding about the traffic properties
in the case of encrypted video streaming over DASH using
HTTP2 (secure), we examined YouTube Chrome browser
traffic in fixed and automatic (auto) download modes. In fixed
mode, the player downloads a fixed video quality without
quality representation adaptation. As a result, the player down-
loads the video in a short time period. In the auto mode
the player selects the quality representation based on the
network conditions, browser resolution, and buffer occupancy.
As a result, the player examines the client conditions for
each segment download in order to maximize the downloaded
quality. Figs. 1a -1b depict Chrome browser traffic download
patterns of a single video title stream. Note that the original
download contained TCP re-transmissions and we filtered
them using a TCP stack implementation [22].

For the analysis, we used the Fiddler [23] web debugging
proxy for viewing different requests without the encryption.
Fig. 2 illustrates the YouTube auto download mode with
Chrome. Each video download has several flows. We found
that often there are two flows both with audio and video. The
short traffic segments contain audio while the longer contain
video.

Fig. 3 shows three downloads over three different WiFi
networks of the same video title, all with the same quality
representation. The figure shows that the first two segments’
download byte-range requests were the same. Due to different
network load conditions, the next segment’s download byte-
range requests were different.

The above analysis leads to several insights concerning the
factors that can hinder classification efforts:

1) YouTube uses HTTP Byte range requests. That is, the
byte range of each segment request can be different. This

depends on the client’s network conditions and playout
buffer levels.

2) Audio data and video data can be found in the same 5-
tuple flow ({protocol (TCP/UDP), src IP, dst IP, src port,
dst port}). In some cases we cannot distinguish between
them. For example, using Fiddler we can see in Fig. 2 in
the top flow, that the first two audio sections (the short
sections) are very close to the two video sections (the
long sections). This can cause a classification error.

3) Close video segments responses can be found in the
same flow. For example, in Fig. 2 in the top flow, there
are four segments (in the first video section) that are
hard to separate.

4) The video and audio sections in each flow do not have
a periodic order.

5) YouTube uses video advertisements that are often down-
loaded in high quality. As a result, distinguishing be-
tween them is not trivial.

6) The players download the same quality representation in
parallel over different flows to accelerate the download.

III. PROPOSED ALGORITHM

We suggest two algorithms for video title classification
of YouTube encrypted video streams: SVM with an RBF
kernel and a nearest neighbor algorithm. The proposed solution
architecture is illustrated in Fig. 4.

The first two modules only pass YouTube video streams
to the next modules. Each segment of network traffic enters
the system separately and is first passed into the Connection
Matching filter. This filter is responsible for checking whether
the incoming flow is new or ongoing. It does so based on
a five-tuple representation: {protocol (TCP/UDP), src IP, dst
IP, src port, dst port}. If the incoming flow is new, the DPI
filter decides whether it is a YouTube flow. This is done based
on the SNI field in the Client Hello message that is part of
the Secure Socket Layer (SSL) protocol. If the DPI module
finds the following string: googlevideos.com (which identifies
YouTube) in the SNI, the stream is passed to the Feature
Extraction module (Section III-A). Any ongoing or new traffic
flow that is not recognized by the DPI as video streaming is
transparently passed into the network without further analysis.
The Classification Algorithm modules are described in sections
III-B and III-C. The Pre-Processing model removes audio and
video features (see Section IV-C).

In this paper we assume that we know how to detect Chrome
browser traffic based on the fact that each browser and OS has
a different fingerprint [18]. We decided to work with Chrome
due to its support of HTTP2 and its increasing popularity.

A. Feature Extraction

DASH is streamed over a TCP transport protocol. Streaming
applications have high bit rate consumption. Thus, feature
extraction methods need to take TCP limitations such as re-
transmission caused by network problems into account. Re-
transmission adds additional data to the stream that can cause
classification errors.
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(a) Chrome auto mode over HTTP2.
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(b) Chrome fixed mode over HTTP2.

Fig. 1: YouTube Costa Rica in 4K - traffic traces from Chrome (Ver 43.0.2357.81) with HTML5 player in automatic and
fixed quality selection modes.

Fig. 2: YouTube Costa Rica 4k auto mode with Chrome. Each horizontal line represents different YouTube flows from the
same download. The video quality is 720P .
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Fig. 3: Total megabytes per segment of three downloads over
different Wi-Fi networks of the same video title, all with
the same quality representation. Due to network conditions
variability, there are differences between the networks.

Many recent works have suggested methods for encrypted
traffic classification and several surveys have presented de-
tailed description of the state of the art methods [24]–[28].
Several works have examined different statistical features
such as session duration [29]–[31], number of packets in
a session [30], [32], [33], different variance calculations of
the minimum, maximum, and average values of inter-arrival
packet time [30], [32], payload size information [32], [34], bit
rate [34], [35], Round-Trip Time (RTT) [35], packet direction
[36], or server sent bit rate [37]. Not all these features
are important for video streams classification. For instance,

the packet size is often MTU size in video streaming, as
video streaming consumes high bandwidth and re-transmission
occurs often. Moreover, TCP parameters such as server sent
bit rate, inter-arrival packet time, RTT, and packet direction
are weak features.

In Figure 1a we can see that flows contain peaks. That
is, traffic bursts. The same characteristics were observed by
Rao et al. [38] and Ameigeiras et al. [39] (coined in [38],
[39] as ”On/Off”). We decided to encode every peak of the
stream to a feature. This feature is the Bit-Per-Peak (BPP);
that is, the total number of bits in a peak after TCP ACK
mechanism [17]. Working with the TCP ACK mechanism
gives us the ability to filter out traffic re-transmission caused
by delay and packet loss. Our feature extraction starts after
we identify that this traffic flow is a Chrome YouTube video
flow [18]. Any packet that enters the algorithm is verified by
TCP stack implementation to prevent re-transmission packets
from affecting our feature accuracy. After the TCP stack we
accumulate the traffic throughput until a traffic silence is
recognized.

B. Traffic Classification Algorithm - SVM with an RBF Kernel

Each download was analyzed based on the steps in Fig. 4,
where each download is represented as a BPP feature vector
of a length of 40 features (this is the maximum needed feature
length after the feature extraction). Downloads that don’t have
enough features are padded with zeros. Each feature vector is
standardized with Gaussian with zero mean and unit variance.

We used a Support Vector Machine (SVM) with an RBF
kernel [40], where the regularization parameter C and γ were
found with 5-fold cross-validation over the following sets
accordingly: {2−5, 2−3, ..., 215} and {2−15, 2−13, ..., 23}.
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Fig. 4: Proposed solution architecture.

C. Traffic Classification Algorithm - Nearest Neighbor (NN)

In the Nearest Neighbor (NN) algorithm, each video stream
(number j of video title i) is represented by Sij , a set of
BPP features (no duplicates). Note that each BPP-set may
have different cardinality. The NN similarity score between
two BPP-sets, S and S ′, is the cardinality of the intersection
set:

sim(S,S ′) = |S ∩ S ′| (1)

At test time, each video stream BPP-set, Stest, is classified
as the video title i that has the maximum similarity score to
one of the title training stream BPP-sets and the intersection
size was larger then Thr, else we classify it as unknown:

∀ 1 ≤ i ≤ n, si =
mi
max
j=1

sim(Stest,Sij) (2)

y(Stest) =


n

argmax
i=1

si if
(

n
max
i=1

si

)
>Thr

unknown otherwise
(3)

IV. PERFORMANCE EVALUATION

This section is structured as follows: First, we describe our
dataset extraction and structure (Section IV-A). Second, we
present the effect of the training set size on the classification
accuracy (Section IV-B). Third, we describe the audio pre-
processing effect in (Section IV-C). Fourth, we turn to evaluate
the effect of packet loss and delay on the model’s robustness
in (Section IV-D). Finally, we evaluate the model’s accuracy
for video titles outside of the training dataset in Section IV-E.

A. Dataset

To collect our dataset we used the Selenium web automation
tool [41] with ChromeDriver [42] for the crawler [21], so it
will simulate a user video download. The crawler receives the
video title URL and the video duration in seconds. We start
to record before the crawler start and open the browser and
we finish after the timer time is up.

We collected a training set of encrypted video streams; the
name of each video is transformed to title index: y ∈ {1 . . . V }
where V = 30, where each title was downloaded n = 90
times (each download may have different network conditions).
Every segment of the stream is encoded to a feature. That
is, the training dataset contained 2700 video streams of 30
unique video titles (90 different downloads per title), each
downloaded in the automated quality representation selection
mode. For each video in our dataset, YouTube provides
a different subset of the following quality representations:
[144P, 240P, 360P, 480P, 720P, 1080P ].

The video titles used in this study are popular YouTube
videos from different categories such as news, video action
trailers, and GoPro videos [20]. In this study we decided to fo-
cus on the Chrome browser since it is the most popular browser
in the market. Chrome YouTube player has two different
modes of operation: the fixed quality download mode and the
adaptive quality selection mode. The Chrome YouTube player
decides which quality representation to download based on
its estimation of the client network conditions. As presented,
both methods have different traffic signature patterns. Since
the automated mode is the default mode and the diversity of
its data is much more complex we decided to explore it in this
work.

We have four testing datasets:
1) test-adaptive-test-titles: 300 video streams of 30 unique

video titles (same titles as in the training phase). Each
has 10 different downloads with an automated represen-
tation selection.

2) test-adaptive-with-drop-test-titles: 400 video streams of
10 unique video titles (titles taken from the train-
ing phase titles), each was downloaded with an addi-
tional added drop percentage from the following list:
{1%, 3%, 6%, 9%}; each was downloaded in the auto-
mated mode.

3) test-adaptive-with-delay-test-titles: 400 video streams of
10 unique video titles (titles taken from the train-
ing phase titles); each was downloaded with an addi-
tional added drop percentage from the following list:
{100, 300, 600, 900}[ms]; each was downloaded in the
automated mode.

4) test-adaptive-unknown-titles: 200 video stream titles
with one download per title were downloaded in the
automated mode. The titles are new and were not
included in the training steps. Please note, that in this
dataset we didn’t use ad-block since advertisement is
considered as unknown titles.

All the test video streams were different from the ones
that were used in the training phase (because of network
conditions). Furthermore, it is important to note that the added
delay and drop affect the client player and cause it to select
different (lower) representation than the normal use.

Fig. 5a illustrates an example of a single video title with 90
different downloads; each have 8 segments. We can see that
each segment has a high bit rate variability. It is noteworthy
that as the TCP window size increases, the variability at the
beginning is a little smaller but still noticeable.

From Fig. 5b which illustrates the features boxplot, we
can observe that the SVM classifier is less suitable for this
task. This is due to the fact that the BPP features indexed
by time have high variability due to the multiple video quality
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Fig. 5: 90 downloads of the Go Pro Snow Daze video title.

representations and HTTP byte-range, which change over BPP.
Since the SVM in our experiments uses a vector of BPPs
features that are indexed by time, it is more sensitive to those
changes.

B. Accuracy Evaluation Using Different Training Dataset
Sizes

Fig. 6 depicts our accuracy with different numbers of
training video titles. We used 10 test video streams for each
title and present the average accuracy for each dataset size.
The figure shows that the SVM classifier performance has a
major increase from 5 to 60 titles. However, from 60 to 90 the
accuracy gain increase is only 4%. It is interesting to see that
even in a small scale dataset our proposed solution achieved
high performance. When the dataset size is based on a single
download the average accuracy is 79.66%. Each increase in
the dataset size increased the accuracy until 98%. We will use
our full dataset for the rest of the performance evaluation.

# Streams per title in training data

A
cc

u
ra

cy
 [

%
]

SVM+RBF

NN (Ours)

Fig. 6: Classification accuracy vs. different training dataset
sizes.

C. Accuracy Evaluation Using Different Pre-Processing Meth-
ods

In this test we evaluated the effect of audio removal pre-
processing. We used the full training set (90 downloads per
video title) with test-adaptive-test-titles. Using Fiddler, we
found that low bit-rate audio traffic features has much lower
entropy compared to video traffic with higher bit-rate ranges.

Audio traffic responses range is from 65 KBytes to 400
KBytes. The pre-processing method filters out all low bit-
rate peaks smaller than 400 KBytes. However, as presented
earlier, it is not always possible to successfully distinguish in
the encrypted traffic level between each audio/video response.
We have found that the few first features of the video server
responses are not necessary unique and are more correlated
to the TCP window state. Usually, in the TCP slow start
the TCP window is very small. After the first/second video
segments the size of a video segment can be much larger. Since
our dataset contains videos with motion we can filter out the
audio correctly but for a music video with static pictures the
video and audio data look similar and in those cases further
research that will estimate the content type and video quality
is needed. It is noteworthy that the segment real size in Fiddler
is not necessarily the same in its network traffic representation,
which can be affected by several factors explained before.

Table I summarizes the pre-processing methods’ effect on
the testing results with the full training dataset. The best ac-
curacy for the SVM+RBF were achieved with pre-processing
(72% accuracy). In our proposed solution, the result gave
the best performance without pre-processing, achieving 98%
accuracy. For the rest of the paper we will use the SVM+RBF
classifier with pre-processing and our classifier without pre-
processing. Fig. 7a depicts the SVM+RBF confusion matrix,

Algorithm with pre-processing without pre-processing
NN 95.66% 98%
SVM+RBF 72% 66.66%

TABLE I: The effect of pre-processing on algorithms accuracy.

while our confusion matrix is illustrated in Fig. 7b. In Fig. 7b
index number 30 in the matrix shows that the stream was not
classified against the dataset.

D. Evaluation of Robustness to Delay and Packet Losses

In this section we artificially added additional packet loss
and delay to the network (which already has natural packet loss
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Fig. 7: Classification confusion matrices results.

and delay). Packet loss has a very strong influence over the
player representation selection. We observed that the quality
degraded from 720P in the regular scenarios to 240P and
144P when encountering high packet loss ratio (9%). It is
important to note that in our testing we added additional packet
loss before the data capturing. Since our training data set
was built from normative network traffic (low packet loss),
these are conditions that the classifiers were not trained for.
As a result, in this scenario, we can expect a low accuracy.
Fig. 8a plots our algorithm and SVM robustness to packet
losses. We can observe that the SVM classifier is much more
vulnerable to packet drop compared to our suggested method.
When encountering 1% packet loss the SVM classifier drops
from 72% to 51% while our algorithm was not affected. When
the packet loss increases to 9% we can see that our solution
achieved 71% accuracy while the SVM classifier achieved
20% accuracy only.

Fig. 8b depicts our algorithm’s robustness to various net-
work delay. It is interesting to observe that both algorithms
were more sensitive to delay compared to packet loss. When
the player encounters severe delays it rebuffers a lot. We can
see that after 100 [ms] the SVM accuracy was decreased to
50% while the proposed solution accuracy was decreased to
96%.

E. Evaluation of Other Titles

In our scenario the adversary sniffs the network and searches
for a finite number of video titles (closed world assumption).
The network traffic, on the other hand, contains many more
titles which are not in the database - unknown titles. Therefore,
it is important to evaluate the accuracy for unknown titles.
We used 200 different titles that are not part of the training
titles. We observed that not even one stream was mistakenly
classified as one of our training titles. In future work, we
will extend the number of unknown titles and investigate the
subject further.

V. CONCLUSIONS

In this work we presented a novel HTTP encrypted adaptive
streaming video title classification algorithm for YouTube
with Chrome browser. The solution was evaluated with two
classification algorithms: SVM+RBF and NN. We evaluated
the classification accuracy with titles inside and outside our
dataset and found that our algorithm has high accuracy.

We found that exploiting the VBR nature of the audio and
video encoded data can be suitable to detect the title name. We
found that the data set size doesn’t need to be large in-order to
achieve good classification results. However, the dataset should
represent all network conditions with all possible browser
resolutions in order to effectively recognize each title. We open
source our dataset [20] and Chrome encrypted data crawler
[21] for future research in the area.

VI. ACKNOWLEDGMENT

This work was partly supported by the Israel National Cyber
Bureau.

REFERENCES

[1] Cisco. The zettabyte era: Trends and analysis, 2015.
[2] ISO/IEC. Information technology - Dynamic adaptive streaming over

HTTP (DASH), May 2014.
[3] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hofeld, and P. Tran-

Gia. A Survey on Quality of Experience of HTTP Adaptive Streaming.
IEEE COMMUNICATION SURVEYS AND TUTORIALS, 17(1):469–
492, 2015.

[4] M. R. Izquierdo and D. S. Reeves. A survey of statistical source models
for variable bit-rate compressed video. Multimedia System, 7(3):199–
213, 1999.

[5] Hypertext Transfer Protocol Version 2. M. Belshe and R. Peon and M.
Thomson. RFC 7540, IETF, May 2015.

[6] Sandvine. Sandvine global internet phenomena report h1 , 2014, 2014.
[7] Google. Google webmaster central blog: Https as a ranking signal,

august, 2014, 2014.
[8] M. Crotti, F. Gringoli, P. Pelosato, and L. Salgarelli. A statistical

approach to IP level classification of network traffic. In International
Conference on Communications, pages 170–176, June 2006.

[9] T. Okabe, T. Kitamura, and T. Shizuno. Statistical traffic identification
method based on flow-level behavior for fair VoIP service. In IEEE
Workshop on VoIP Management and Security, pages 35–40, April 2006.



Packet Loss [%]

A
cc

u
ra

cy
 [

%
]

NN (ours)

SVM+RBF

(a) Accuracy results for additional packet loss percentage

A
cc

u
ra

cy
 [

%
]

NN (ours)

SVM+RBF

Delay [ms]

(b) Accuracy results for additional LAN network delay

Fig. 8: Accuracy results for different network conditions.

[10] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. Timing analysis
of keystrokes and timing attacks on ssh. In Proceedings of the 10th
Conference on USENIX Security Symposium - Volume 10, pages 25–25,
2001.

[11] Brice Canvel, Alain Hiltgen, Serge Vaudenay, and Martin Vuagnoux.
Password interception in a ssl/tls channel. In Advances in Cryptology
- CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science,
pages 583–599. Springer Berlin Heidelberg, 2003.

[12] T. Scott Saponas, Jonathan Lester, Carl Hartung, Sameer Agarwal,
and Tadayoshi Kohno. Devices that tell on you: Privacy trends in
consumer ubiquitous computing. In Proceedings of 16th USENIX
Security Symposium on USENIX Security Symposium, pages 5:1–5:16,
2007.

[13] Yali Liu, C. Ou, Zhi Li, C. Corbett, B. Mukherjee, and D. Ghosal.
Wavelet-based traffic analysis for identifying video streams over broad-
band networks. In IEEE Global Telecommunications Conference, pages
1–6, Nov 2008.

[14] Yali Liu, Ahmad-Reza Sadeghi, Dipak Ghosal, and Biswanath Mukher-
jee. Video streaming forensic content identification with traffic
snooping. In Information Security, volume 6531 of Lecture Notes in
Computer Science, pages 129–135. Springer, 2011.

[15] AM. White, AR. Matthews, KZ. Snow, and F. Monrose. Phonotactic
reconstruction of encrypted voip conversations: Hookt on fon-iks. In
Security and Privacy (SP), 2011 IEEE Symposium on, pages 3–18. IEEE,
2011.

[16] CV. Wright, L. Ballard, F. Monrose, and GM. Masson. Language
identification of encrypted voip traffic: Alejandra y roberto or alice and
bob? In Proceedings of 16th USENIX Security Symposium on USENIX
Security Symposium, pages 1–12, 2007.

[17] R. Dubin, A. Dvir, O. Pele, O. Hadar, I.Raichman, and O. Trabelsi.
Real time video quality representation classification of encrypted http
adaptive video streaming-the case of safari. In IEEE Digital Media
Industry and Academic Forum, Santorini, Greece. IEEE, 2016.

[18] J. Muehlstein, Y. Zion, M. Bahumi, I. Kirshenboim, R. Dubin, A. Dvir,
and O. Pele. Analyzing HTTPS encrypted traffic to identify user
operating system, browser and application. In CCNC-Workshop, 2017.

[19] S. Agarwal, A. Sureka, and V. Goyal. Open source social media analytics
for intelligence and security informatics applications. In International
Conference on Big Data Analytics, pages 21–37. Springer, 2015.

[20] Dataset. The research dataset. http://www.cse.bgu.ac.il/title
fingerprinting/.

[21] Crawler. The research chrome youtube encrypted network traffic crawler.
https://github.com/randubin/YouTube video title downloader.

[22] R. Dubin, O. Hadar, A. Noam, and R. Ohayon. Progressive download
video rate traffic shaping using tcp window and deep packet inspection.
In WORLDCOMP, 2012.

[23] Fiddler-The Free Web Debugging Proxy by Telerik. http://www.telerik.
com/fiddler, 2012.
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